fast-reid/tools/deploy/README.md

103 lines
3.5 KiB
Markdown
Raw Normal View History

# Deployment
This directory contains:
1. A script that converts a fastreid model to Caffe format.
2. An exmpale that loads a R50 baseline model in Caffe and run inference.
## Tutorial
2020-06-02 18:12:57 +08:00
This is a tiny example for converting fastreid-baseline in `meta_arch` to Caffe model, if you want to convert more complex architecture, you need to customize more things.
1. Change `preprocess_image` in `fastreid/modeling/meta_arch/baseline.py` as below
```python
def preprocess_image(self, batched_inputs):
"""
Normalize and batch the input images.
"""
# images = [x["images"] for x in batched_inputs]
# images = batched_inputs["images"]
images = batched_inputs
images.sub_(self.pixel_mean).div_(self.pixel_std)
return images
```
2. Run `caffe_export.py` to get the converted Caffe model,
```bash
python caffe_export.py --config-file "/export/home/lxy/fast-reid/logs/market1501/bagtricks_R50/config.yaml" --name "baseline_R50" --output "logs/caffe_model" --opts MODEL.WEIGHTS "/export/home/lxy/fast-reid/logs/market1501/bagtricks_R50/model_final.pth"
```
then you can check the Caffe model and prototxt in `logs/caffe_model`.
3. Change `prototxt` following next three steps:
1) Edit `max_pooling` in `baseline_R50.prototxt` like this
```prototxt
layer {
name: "max_pool1"
type: "Pooling"
bottom: "relu_blob1"
top: "max_pool_blob1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
pad: 0 # 1
# ceil_mode: false
}
}
```
2) Add `avg_pooling` right place in `baseline_R50.prototxt`
```prototxt
layer {
name: "avgpool1"
type: "Pooling"
bottom: "relu_blob49"
top: "avgpool_blob1"
pooling_param {
pool: AVE
global_pooling: true
}
}
```
3) Change the last layer `top` name to `output`
```prototxt
layer {
name: "bn_scale54"
type: "Scale"
bottom: "batch_norm_blob54"
top: "output" # bn_norm_blob54
scale_param {
bias_term: true
}
}
```
4. (optional) You can open [Netscope](https://ethereon.github.io/netscope/quickstart.html), then enter you network `prototxt` to visualize the network.
5. Run `caffe_inference.py` to save Caffe model features with input images
```bash
python caffe_inference.py --model-def "logs/caffe_model/baseline_R50.prototxt" \
--model-weights "logs/caffe_model/baseline_R50.caffemodel" \
--input \
'/export/home/DATA/Market-1501-v15.09.15/bounding_box_test/1182_c5s3_015240_04.jpg' \
'/export/home/DATA/Market-1501-v15.09.15/bounding_box_test/1182_c6s3_038217_01.jpg' \
'/export/home/DATA/Market-1501-v15.09.15/bounding_box_test/1183_c5s3_006943_05.jpg' \
--output "caffe_R34_output"
```
6. Run `demo/demo.py` to get fastreid model features with the same input images, then compute the cosine similarity of difference model features to verify if you convert Caffe model successfully.
## Acknowledgements
2020-06-02 18:12:57 +08:00
Thank to [CPFLAME](https://github.com/CPFLAME), [gcong18](https://github.com/gcong18), [YuxiangJohn](https://github.com/YuxiangJohn) and [wiggin66](https://github.com/wiggin66) at JDAI Model Acceleration Group for help in PyTorch to Caffe model converting.