fast-reid/fastreid/layers/circle_softmax.py

46 lines
1.3 KiB
Python
Raw Normal View History

# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter
2020-07-17 19:13:45 +08:00
class CircleSoftmax(nn.Module):
def __init__(self, cfg, in_feat, num_classes):
super().__init__()
self.in_feat = in_feat
self._num_classes = num_classes
2020-09-01 16:14:45 +08:00
self.s = cfg.MODEL.HEADS.SCALE
self.m = cfg.MODEL.HEADS.MARGIN
2020-06-22 11:56:39 +08:00
self.weight = Parameter(torch.Tensor(num_classes, in_feat))
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
def forward(self, features, targets):
sim_mat = F.linear(F.normalize(features), F.normalize(self.weight))
2020-09-01 16:14:45 +08:00
alpha_p = torch.clamp_min(-sim_mat.detach() + 1 + self.m, min=0.)
alpha_n = torch.clamp_min(sim_mat.detach() + self.m, min=0.)
delta_p = 1 - self.m
delta_n = self.m
2020-09-01 16:14:45 +08:00
s_p = self.s * alpha_p * (sim_mat - delta_p)
s_n = self.s * alpha_n * (sim_mat - delta_n)
2020-07-06 16:57:43 +08:00
targets = F.one_hot(targets, num_classes=self._num_classes)
pred_class_logits = targets * s_p + (1.0 - targets) * s_n
return pred_class_logits
def extra_repr(self):
return 'in_features={}, num_classes={}, scale={}, margin={}'.format(
2020-09-01 16:14:45 +08:00
self.in_feat, self._num_classes, self.s, self.m
)