fast-reid/tools/train.py

88 lines
2.2 KiB
Python
Raw Normal View History

# encoding: utf-8
"""
@author: sherlock
@contact: sherlockliao01@gmail.com
"""
import argparse
import os
import sys
2018-10-18 19:04:28 +08:00
from torch.backends import cudnn
2019-01-10 18:39:31 +08:00
sys.path.append('.')
from config import cfg
from data import make_data_loader
from engine.trainer import do_train
from modeling import build_model
from layers import make_loss
from solver import make_optimizer, WarmupMultiStepLR
from utils.logger import setup_logger
def train(cfg):
# prepare dataset
train_loader, val_loader, num_query, num_classes = make_data_loader(cfg)
# prepare model
model = build_model(cfg, num_classes)
optimizer = make_optimizer(cfg, model)
scheduler = WarmupMultiStepLR(optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, cfg.SOLVER.WARMUP_FACTOR,
cfg.SOLVER.WARMUP_ITERS, cfg.SOLVER.WARMUP_METHOD)
loss_func = make_loss(cfg)
arguments = {}
do_train(
cfg,
model,
train_loader,
val_loader,
optimizer,
scheduler,
loss_func,
num_query
)
def main():
2019-01-10 18:39:31 +08:00
parser = argparse.ArgumentParser(description="ReID Baseline Training")
parser.add_argument(
"--config_file", default="", help="path to config file", type=str
)
parser.add_argument("opts", help="Modify config options using the command-line", default=None,
nargs=argparse.REMAINDER)
args = parser.parse_args()
2019-01-10 18:39:31 +08:00
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
if args.config_file != "":
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir)
logger = setup_logger("reid_baseline", output_dir, 0)
logger.info("Using {} GPUS".format(num_gpus))
logger.info(args)
if args.config_file != "":
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, 'r') as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
2018-10-18 19:04:28 +08:00
cudnn.benchmark = True
2019-01-10 18:39:31 +08:00
train(cfg)
if __name__ == '__main__':
main()