fast-reid/fastreid/data/datasets/sensereid.py

46 lines
1.3 KiB
Python
Raw Normal View History

2020-09-01 16:13:12 +08:00
# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import os
from glob import glob
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset
__all__ = ['SenseReID', ]
@DATASET_REGISTRY.register()
class SenseReID(ImageDataset):
dataset_dir = "SenseReID"
dataset_name = "senseid"
def __init__(self, root='datasets', **kwargs):
self.root = root
self.train_path = os.path.join(self.root, self.dataset_dir)
required_files = [self.train_path]
self.check_before_run(required_files)
train = self.process_train(self.train_path)
super().__init__(train, [], [], **kwargs)
def process_train(self, train_path):
data = []
file_path_list = ['test_gallery', 'test_prob']
for file_path in file_path_list:
sub_file = os.path.join(train_path, file_path)
img_name = glob(os.path.join(sub_file, "*.jpg"))
for img_path in img_name:
img_name = img_path.split('/')[-1]
img_info = img_name.split('_')
pid = self.dataset_name + "_" + img_info[0]
camid = self.dataset_name + "_" + img_info[1].split('.')[0]
data.append([img_path, pid, camid])
return data