2020-02-10 07:38:56 +08:00
|
|
|
# encoding: utf-8
|
|
|
|
"""
|
|
|
|
@author: liaoxingyu
|
|
|
|
@contact: sherlockliao01@gmail.com
|
|
|
|
"""
|
|
|
|
|
2020-04-27 11:41:12 +08:00
|
|
|
__all__ = ['ToTensor', 'RandomErasing', 'RandomPatch', 'AugMix', ]
|
2020-02-10 07:38:56 +08:00
|
|
|
|
|
|
|
import math
|
|
|
|
import random
|
2020-04-05 23:54:26 +08:00
|
|
|
from collections import deque
|
2020-02-10 07:38:56 +08:00
|
|
|
|
|
|
|
import numpy as np
|
2020-05-08 19:24:27 +08:00
|
|
|
from PIL import Image
|
2020-02-10 07:38:56 +08:00
|
|
|
|
2020-05-27 22:56:31 +08:00
|
|
|
from .functional import to_tensor, augmentations_reid
|
2020-02-18 21:01:23 +08:00
|
|
|
|
|
|
|
|
|
|
|
class ToTensor(object):
|
|
|
|
"""Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
|
|
|
|
|
|
|
|
Converts a PIL Image or numpy.ndarray (H x W x C) in the range
|
|
|
|
[0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
|
|
|
|
if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
|
|
|
|
or if the numpy.ndarray has dtype = np.uint8
|
|
|
|
|
|
|
|
In the other cases, tensors are returned without scaling.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __call__(self, pic):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
pic (PIL Image or numpy.ndarray): Image to be converted to tensor.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor: Converted image.
|
|
|
|
"""
|
|
|
|
return to_tensor(pic)
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return self.__class__.__name__ + '()'
|
2020-02-10 07:38:56 +08:00
|
|
|
|
|
|
|
|
|
|
|
class RandomErasing(object):
|
|
|
|
""" Randomly selects a rectangle region in an image and erases its pixels.
|
|
|
|
'Random Erasing Data Augmentation' by Zhong et al.
|
|
|
|
See https://arxiv.org/pdf/1708.04896.pdf
|
|
|
|
Args:
|
|
|
|
probability: The probability that the Random Erasing operation will be performed.
|
|
|
|
sl: Minimum proportion of erased area against input image.
|
|
|
|
sh: Maximum proportion of erased area against input image.
|
|
|
|
r1: Minimum aspect ratio of erased area.
|
|
|
|
mean: Erasing value.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, probability=0.5, sl=0.02, sh=0.4, r1=0.3, mean=255 * (0.49735, 0.4822, 0.4465)):
|
|
|
|
self.probability = probability
|
|
|
|
self.mean = mean
|
|
|
|
self.sl = sl
|
|
|
|
self.sh = sh
|
|
|
|
self.r1 = r1
|
|
|
|
|
|
|
|
def __call__(self, img):
|
2020-02-10 22:13:04 +08:00
|
|
|
img = np.asarray(img, dtype=np.float32).copy()
|
2020-02-10 07:38:56 +08:00
|
|
|
if random.uniform(0, 1) > self.probability:
|
|
|
|
return img
|
|
|
|
|
|
|
|
for attempt in range(100):
|
|
|
|
area = img.shape[0] * img.shape[1]
|
|
|
|
target_area = random.uniform(self.sl, self.sh) * area
|
|
|
|
aspect_ratio = random.uniform(self.r1, 1 / self.r1)
|
|
|
|
|
|
|
|
h = int(round(math.sqrt(target_area * aspect_ratio)))
|
|
|
|
w = int(round(math.sqrt(target_area / aspect_ratio)))
|
|
|
|
|
|
|
|
if w < img.shape[1] and h < img.shape[0]:
|
|
|
|
x1 = random.randint(0, img.shape[0] - h)
|
|
|
|
y1 = random.randint(0, img.shape[1] - w)
|
|
|
|
if img.shape[2] == 3:
|
|
|
|
img[x1:x1 + h, y1:y1 + w, 0] = self.mean[0]
|
|
|
|
img[x1:x1 + h, y1:y1 + w, 1] = self.mean[1]
|
|
|
|
img[x1:x1 + h, y1:y1 + w, 2] = self.mean[2]
|
|
|
|
else:
|
|
|
|
img[x1:x1 + h, y1:y1 + w, 0] = self.mean[0]
|
2020-02-10 22:13:04 +08:00
|
|
|
return img
|
|
|
|
return img
|
2020-02-10 07:38:56 +08:00
|
|
|
|
|
|
|
|
2020-04-05 23:54:26 +08:00
|
|
|
class RandomPatch(object):
|
|
|
|
"""Random patch data augmentation.
|
|
|
|
There is a patch pool that stores randomly extracted pathces from person images.
|
|
|
|
For each input image, RandomPatch
|
|
|
|
1) extracts a random patch and stores the patch in the patch pool;
|
|
|
|
2) randomly selects a patch from the patch pool and pastes it on the
|
|
|
|
input (at random position) to simulate occlusion.
|
|
|
|
Reference:
|
|
|
|
- Zhou et al. Omni-Scale Feature Learning for Person Re-Identification. ICCV, 2019.
|
|
|
|
- Zhou et al. Learning Generalisable Omni-Scale Representations
|
|
|
|
for Person Re-Identification. arXiv preprint, 2019.
|
|
|
|
"""
|
2020-02-10 07:38:56 +08:00
|
|
|
|
2020-04-05 23:54:26 +08:00
|
|
|
def __init__(self, prob_happen=0.5, pool_capacity=50000, min_sample_size=100,
|
|
|
|
patch_min_area=0.01, patch_max_area=0.5, patch_min_ratio=0.1,
|
|
|
|
prob_rotate=0.5, prob_flip_leftright=0.5,
|
|
|
|
):
|
|
|
|
self.prob_happen = prob_happen
|
|
|
|
|
|
|
|
self.patch_min_area = patch_min_area
|
|
|
|
self.patch_max_area = patch_max_area
|
|
|
|
self.patch_min_ratio = patch_min_ratio
|
|
|
|
|
|
|
|
self.prob_rotate = prob_rotate
|
|
|
|
self.prob_flip_leftright = prob_flip_leftright
|
2020-02-10 07:38:56 +08:00
|
|
|
|
2020-04-05 23:54:26 +08:00
|
|
|
self.patchpool = deque(maxlen=pool_capacity)
|
|
|
|
self.min_sample_size = min_sample_size
|
|
|
|
|
|
|
|
def generate_wh(self, W, H):
|
|
|
|
area = W * H
|
2020-02-10 07:38:56 +08:00
|
|
|
for attempt in range(100):
|
2020-04-05 23:54:26 +08:00
|
|
|
target_area = random.uniform(self.patch_min_area, self.patch_max_area) * area
|
|
|
|
aspect_ratio = random.uniform(self.patch_min_ratio, 1. / self.patch_min_ratio)
|
|
|
|
h = int(round(math.sqrt(target_area * aspect_ratio)))
|
|
|
|
w = int(round(math.sqrt(target_area / aspect_ratio)))
|
|
|
|
if w < W and h < H:
|
|
|
|
return w, h
|
|
|
|
return None, None
|
2020-02-10 07:38:56 +08:00
|
|
|
|
2020-04-05 23:54:26 +08:00
|
|
|
def transform_patch(self, patch):
|
|
|
|
if random.uniform(0, 1) > self.prob_flip_leftright:
|
|
|
|
patch = patch.transpose(Image.FLIP_LEFT_RIGHT)
|
|
|
|
if random.uniform(0, 1) > self.prob_rotate:
|
|
|
|
patch = patch.rotate(random.randint(-10, 10))
|
|
|
|
return patch
|
2020-02-10 07:38:56 +08:00
|
|
|
|
2020-04-05 23:54:26 +08:00
|
|
|
def __call__(self, img):
|
|
|
|
if isinstance(img, np.ndarray):
|
|
|
|
img = Image.fromarray(img.astype(np.uint8))
|
2020-02-10 07:38:56 +08:00
|
|
|
|
2020-04-05 23:54:26 +08:00
|
|
|
W, H = img.size # original image size
|
2020-02-10 07:38:56 +08:00
|
|
|
|
2020-04-05 23:54:26 +08:00
|
|
|
# collect new patch
|
|
|
|
w, h = self.generate_wh(W, H)
|
|
|
|
if w is not None and h is not None:
|
|
|
|
x1 = random.randint(0, W - w)
|
|
|
|
y1 = random.randint(0, H - h)
|
|
|
|
new_patch = img.crop((x1, y1, x1 + w, y1 + h))
|
|
|
|
self.patchpool.append(new_patch)
|
2020-02-10 07:38:56 +08:00
|
|
|
|
2020-04-05 23:54:26 +08:00
|
|
|
if len(self.patchpool) < self.min_sample_size:
|
|
|
|
return img
|
|
|
|
|
|
|
|
if random.uniform(0, 1) > self.prob_happen:
|
|
|
|
return img
|
2020-02-10 07:38:56 +08:00
|
|
|
|
2020-04-05 23:54:26 +08:00
|
|
|
# paste a randomly selected patch on a random position
|
|
|
|
patch = random.sample(self.patchpool, 1)[0]
|
|
|
|
patchW, patchH = patch.size
|
|
|
|
x1 = random.randint(0, W - patchW)
|
|
|
|
y1 = random.randint(0, H - patchH)
|
|
|
|
patch = self.transform_patch(patch)
|
|
|
|
img.paste(patch, (x1, y1))
|
2020-02-10 07:38:56 +08:00
|
|
|
|
2020-04-05 23:54:26 +08:00
|
|
|
return img
|
|
|
|
|
|
|
|
|
|
|
|
class AugMix(object):
|
|
|
|
""" Perform AugMix augmentation and compute mixture.
|
|
|
|
Args:
|
|
|
|
aug_prob_coeff: Probability distribution coefficients.
|
|
|
|
mixture_width: Number of augmentation chains to mix per augmented example.
|
|
|
|
mixture_depth: Depth of augmentation chains. -1 denotes stochastic depth in [1, 3]'
|
|
|
|
severity: Severity of underlying augmentation operators (between 1 to 10).
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, aug_prob_coeff=1, mixture_width=3, mixture_depth=-1, severity=1):
|
|
|
|
self.aug_prob_coeff = aug_prob_coeff
|
|
|
|
self.mixture_width = mixture_width
|
|
|
|
self.mixture_depth = mixture_depth
|
|
|
|
self.severity = severity
|
2020-05-27 22:56:31 +08:00
|
|
|
self.aug_list = augmentations_reid
|
2020-04-05 23:54:26 +08:00
|
|
|
|
|
|
|
def __call__(self, image):
|
|
|
|
"""Perform AugMix augmentations and compute mixture.
|
|
|
|
Returns:
|
|
|
|
mixed: Augmented and mixed image.
|
|
|
|
"""
|
|
|
|
ws = np.float32(
|
|
|
|
np.random.dirichlet([self.aug_prob_coeff] * self.mixture_width))
|
|
|
|
m = np.float32(np.random.beta(self.aug_prob_coeff, self.aug_prob_coeff))
|
|
|
|
|
|
|
|
image = np.asarray(image, dtype=np.float32).copy()
|
|
|
|
mix = np.zeros_like(image)
|
|
|
|
h, w = image.shape[0], image.shape[1]
|
|
|
|
for i in range(self.mixture_width):
|
|
|
|
image_aug = Image.fromarray(image.copy().astype(np.uint8))
|
|
|
|
depth = self.mixture_depth if self.mixture_depth > 0 else np.random.randint(1, 4)
|
|
|
|
for _ in range(depth):
|
|
|
|
op = np.random.choice(self.aug_list)
|
|
|
|
image_aug = op(image_aug, self.severity, (w, h))
|
|
|
|
mix += ws[i] * np.asarray(image_aug, dtype=np.float32)
|
|
|
|
|
|
|
|
mixed = (1 - m) * image + m * mix
|
|
|
|
return mixed
|
|
|
|
|
2020-04-27 11:41:12 +08:00
|
|
|
# class ColorJitter(object):
|
|
|
|
# """docstring for do_color"""
|
|
|
|
#
|
|
|
|
# def __init__(self, probability=0.5):
|
|
|
|
# self.probability = probability
|
|
|
|
#
|
|
|
|
# def do_brightness_shift(self, image, alpha=0.125):
|
|
|
|
# image = image.astype(np.float32)
|
|
|
|
# image = image + alpha * 255
|
|
|
|
# image = np.clip(image, 0, 255).astype(np.uint8)
|
|
|
|
# return image
|
|
|
|
#
|
|
|
|
# def do_brightness_multiply(self, image, alpha=1):
|
|
|
|
# image = image.astype(np.float32)
|
|
|
|
# image = alpha * image
|
|
|
|
# image = np.clip(image, 0, 255).astype(np.uint8)
|
|
|
|
# return image
|
|
|
|
#
|
|
|
|
# def do_contrast(self, image, alpha=1.0):
|
|
|
|
# image = image.astype(np.float32)
|
|
|
|
# gray = image * np.array([[[0.114, 0.587, 0.299]]]) # rgb to gray (YCbCr)
|
|
|
|
# gray = (3.0 * (1.0 - alpha) / gray.size) * np.sum(gray)
|
|
|
|
# image = alpha * image + gray
|
|
|
|
# image = np.clip(image, 0, 255).astype(np.uint8)
|
|
|
|
# return image
|
|
|
|
#
|
|
|
|
# # https://www.pyimagesearch.com/2015/10/05/opencv-gamma-correction/
|
|
|
|
# def do_gamma(self, image, gamma=1.0):
|
|
|
|
# table = np.array([((i / 255.0) ** (1.0 / gamma)) * 255
|
|
|
|
# for i in np.arange(0, 256)]).astype("uint8")
|
|
|
|
#
|
|
|
|
# return cv2.LUT(image, table) # apply gamma correction using the lookup table
|
|
|
|
#
|
|
|
|
# def do_clahe(self, image, clip=2, grid=16):
|
|
|
|
# grid = int(grid)
|
|
|
|
#
|
|
|
|
# lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
|
|
|
|
# gray, a, b = cv2.split(lab)
|
|
|
|
# gray = cv2.createCLAHE(clipLimit=clip, tileGridSize=(grid, grid)).apply(gray)
|
|
|
|
# lab = cv2.merge((gray, a, b))
|
|
|
|
# image = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)
|
|
|
|
#
|
|
|
|
# return image
|
|
|
|
#
|
|
|
|
# def __call__(self, image):
|
|
|
|
# if random.uniform(0, 1) > self.probability:
|
|
|
|
# return image
|
|
|
|
#
|
|
|
|
# image = np.asarray(image, dtype=np.uint8).copy()
|
|
|
|
# index = random.randint(0, 4)
|
|
|
|
# if index == 0:
|
|
|
|
# image = self.do_brightness_shift(image, 0.1)
|
|
|
|
# elif index == 1:
|
|
|
|
# image = self.do_gamma(image, 1)
|
|
|
|
# elif index == 2:
|
|
|
|
# image = self.do_clahe(image)
|
|
|
|
# elif index == 3:
|
|
|
|
# image = self.do_brightness_multiply(image)
|
|
|
|
# elif index == 4:
|
|
|
|
# image = self.do_contrast(image)
|
|
|
|
# return image
|
2020-02-10 07:38:56 +08:00
|
|
|
|
|
|
|
|
2020-04-05 23:54:26 +08:00
|
|
|
# class random_shift(object):
|
|
|
|
# """docstring for do_color"""
|
|
|
|
#
|
|
|
|
# def __init__(self, probability=0.5):
|
|
|
|
# self.probability = probability
|
|
|
|
#
|
|
|
|
# def __call__(self, image):
|
|
|
|
# if random.uniform(0, 1) > self.probability:
|
|
|
|
# return image
|
|
|
|
#
|
|
|
|
# width, height, d = image.shape
|
|
|
|
# zero_image = np.zeros_like(image)
|
|
|
|
# w = random.randint(0, 20) - 10
|
|
|
|
# h = random.randint(0, 30) - 15
|
|
|
|
# zero_image[max(0, w): min(w + width, width), max(h, 0): min(h + height, height)] = \
|
|
|
|
# image[max(0, -w): min(-w + width, width), max(-h, 0): min(-h + height, height)]
|
|
|
|
# image = zero_image.copy()
|
|
|
|
# return image
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# class random_scale(object):
|
|
|
|
# """docstring for do_color"""
|
|
|
|
#
|
|
|
|
# def __init__(self, probability=0.5):
|
|
|
|
# self.probability = probability
|
|
|
|
#
|
|
|
|
# def __call__(self, image):
|
|
|
|
# if random.uniform(0, 1) > self.probability:
|
|
|
|
# return image
|
|
|
|
#
|
|
|
|
# scale = random.random() * 0.1 + 0.9
|
|
|
|
# assert 0.9 <= scale <= 1
|
|
|
|
# width, height, d = image.shape
|
|
|
|
# zero_image = np.zeros_like(image)
|
|
|
|
# new_width = round(width * scale)
|
|
|
|
# new_height = round(height * scale)
|
|
|
|
# image = cv2.resize(image, (new_height, new_width))
|
|
|
|
# start_w = random.randint(0, width - new_width)
|
|
|
|
# start_h = random.randint(0, height - new_height)
|
|
|
|
# zero_image[start_w: start_w + new_width,
|
|
|
|
# start_h:start_h + new_height] = image
|
|
|
|
# image = zero_image.copy()
|
|
|
|
# return image
|