fast-reid/projects/AGW/README.md

65 lines
1.7 KiB
Markdown
Raw Normal View History

2020-02-13 20:37:08 +08:00
# AGW Baseline in FastReID
2020-04-21 11:35:54 +08:00
Deep Learning for Person Re-identification: A Survey and Outlook. [arXiv](https://arxiv.org/abs/2001.04193)
This is a re-implementation of [ReID-Survey with a Powerful AGW Baseline](https://github.com/mangye16/ReID-Survey)
## Highlights
- A comprehensive survey with in-depth analysis for person Re-ID in recent years (2016-2019).
- A new evaluation metric, namely mean Inverse Negative Penalty (mINP), which measures the ability to find the hardest correct match.
2020-02-13 20:37:08 +08:00
## Training
To train a model, run
```bash
2020-04-21 11:35:54 +08:00
CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file <config.yml>
2020-02-13 20:37:08 +08:00
```
2020-04-21 11:35:54 +08:00
For example, to launch a end-to-end baseline training on market1501 dataset on GPU#1,
2020-02-13 20:37:08 +08:00
one should excute:
```bash
2020-04-21 11:35:54 +08:00
CUDA_VISIBLE_DEVICES=1 python train_net.py --config-file='configs/AGW_market1501.yml'
```
## Evaluation
To evaluate the model in test set, run similarly:
```bash
CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file <configs.yaml> --eval-only MODEL.WEIGHTS model.pth
2020-02-13 20:37:08 +08:00
```
## Experimental Results
### Market1501 dataset
| Method | Pretrained | Rank@1 | mAP | mINP |
| :---: | :---: | :---: |:---: | :---: |
| AGW | ImageNet | 94.9% | 87.4% | 63.1% |
2020-02-13 20:37:08 +08:00
### DukeMTMC dataset
| Method | Pretrained | Rank@1 | mAP | mINP |
| :---: | :---: | :---: |:---: | :---: |
2020-04-21 11:35:54 +08:00
| AGW | ImageNet | 89.2% | 79.5% | 44.5% |
2020-02-13 20:37:08 +08:00
### MSMT17 dataset
| Method | Pretrained | Rank@1 | mAP | mINP |
| :---: | :---: | :---: |:---: | :---: |
2020-04-21 11:35:54 +08:00
| AGW | ImageNet | 76.8% | 53.7% | 12.2% |
```
@article{arxiv20reidsurvey,
title={Deep Learning for Person Re-identification: A Survey and Outlook},
author={Ye, Mang and Shen, Jianbing and Lin, Gaojie and Xiang, Tao and Shao, Ling and Hoi, Steven C. H.},
journal={arXiv preprint arXiv:2001.04193},
year={2020},
}
```