2020-02-13 20:37:08 +08:00
|
|
|
# AGW Baseline in FastReID
|
|
|
|
|
2020-04-21 11:35:54 +08:00
|
|
|
Deep Learning for Person Re-identification: A Survey and Outlook. [arXiv](https://arxiv.org/abs/2001.04193)
|
|
|
|
|
|
|
|
This is a re-implementation of [ReID-Survey with a Powerful AGW Baseline](https://github.com/mangye16/ReID-Survey)
|
|
|
|
|
|
|
|
## Highlights
|
|
|
|
|
|
|
|
- A comprehensive survey with in-depth analysis for person Re-ID in recent years (2016-2019).
|
|
|
|
|
|
|
|
- A new evaluation metric, namely mean Inverse Negative Penalty (mINP), which measures the ability to find the hardest correct match.
|
2020-04-20 10:59:29 +08:00
|
|
|
|
2020-02-13 20:37:08 +08:00
|
|
|
## Training
|
|
|
|
|
|
|
|
To train a model, run
|
|
|
|
|
|
|
|
```bash
|
2020-04-21 11:35:54 +08:00
|
|
|
CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file <config.yml>
|
2020-02-13 20:37:08 +08:00
|
|
|
```
|
|
|
|
|
2020-04-21 11:35:54 +08:00
|
|
|
For example, to launch a end-to-end baseline training on market1501 dataset on GPU#1,
|
2020-02-13 20:37:08 +08:00
|
|
|
one should excute:
|
|
|
|
|
|
|
|
```bash
|
2020-04-21 11:35:54 +08:00
|
|
|
CUDA_VISIBLE_DEVICES=1 python train_net.py --config-file='configs/AGW_market1501.yml'
|
|
|
|
```
|
|
|
|
|
|
|
|
## Evaluation
|
|
|
|
|
|
|
|
To evaluate the model in test set, run similarly:
|
|
|
|
|
|
|
|
```bash
|
|
|
|
CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file <configs.yaml> --eval-only MODEL.WEIGHTS model.pth
|
2020-02-13 20:37:08 +08:00
|
|
|
```
|
|
|
|
|
|
|
|
## Experimental Results
|
|
|
|
|
|
|
|
### Market1501 dataset
|
|
|
|
|
2020-03-16 15:23:09 +08:00
|
|
|
| Method | Pretrained | Rank@1 | mAP | mINP |
|
|
|
|
| :---: | :---: | :---: |:---: | :---: |
|
|
|
|
| AGW | ImageNet | 94.9% | 87.4% | 63.1% |
|
2020-02-13 20:37:08 +08:00
|
|
|
|
|
|
|
### DukeMTMC dataset
|
|
|
|
|
2020-03-16 15:23:09 +08:00
|
|
|
| Method | Pretrained | Rank@1 | mAP | mINP |
|
|
|
|
| :---: | :---: | :---: |:---: | :---: |
|
2020-04-21 11:35:54 +08:00
|
|
|
| AGW | ImageNet | 89.2% | 79.5% | 44.5% |
|
2020-02-13 20:37:08 +08:00
|
|
|
|
|
|
|
### MSMT17 dataset
|
|
|
|
|
2020-03-16 15:23:09 +08:00
|
|
|
| Method | Pretrained | Rank@1 | mAP | mINP |
|
|
|
|
| :---: | :---: | :---: |:---: | :---: |
|
2020-04-21 11:35:54 +08:00
|
|
|
| AGW | ImageNet | 76.8% | 53.7% | 12.2% |
|
|
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
@article{arxiv20reidsurvey,
|
|
|
|
title={Deep Learning for Person Re-identification: A Survey and Outlook},
|
|
|
|
author={Ye, Mang and Shen, Jianbing and Lin, Gaojie and Xiang, Tao and Shao, Ling and Hoi, Steven C. H.},
|
|
|
|
journal={arXiv preprint arXiv:2001.04193},
|
|
|
|
year={2020},
|
|
|
|
}
|
|
|
|
```
|