fast-reid/fastreid/layers/pooling.py

125 lines
3.6 KiB
Python
Raw Normal View History

2020-03-25 10:58:26 +08:00
# encoding: utf-8
"""
@author: l1aoxingyu
@contact: sherlockliao01@gmail.com
"""
import torch
import torch.nn.functional as F
from torch import nn
__all__ = [
'Identity',
'Flatten',
'GlobalAvgPool',
'GlobalMaxPool',
'GeneralizedMeanPooling',
'GeneralizedMeanPoolingP',
'FastGlobalAvgPool',
'AdaptiveAvgMaxPool',
'ClipGlobalAvgPool',
]
class Identity(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
def forward(self, input):
return input
2020-09-01 16:14:45 +08:00
2020-03-25 10:58:26 +08:00
class Flatten(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
def forward(self, input):
return input.view(input.size(0), -1, 1, 1)
class GlobalAvgPool(nn.AdaptiveAvgPool2d):
def __init__(self, output_size=1, *args, **kwargs):
super().__init__(output_size)
class GlobalMaxPool(nn.AdaptiveMaxPool2d):
def __init__(self, output_size=1, *args, **kwargs):
super().__init__(output_size)
2020-03-25 10:58:26 +08:00
class GeneralizedMeanPooling(nn.Module):
r"""Applies a 2D power-average adaptive pooling over an input signal composed of several input planes.
The function computed is: :math:`f(X) = pow(sum(pow(X, p)), 1/p)`
- At p = infinity, one gets Max Pooling
- At p = 1, one gets Average Pooling
The output is of size H x W, for any input size.
The number of output features is equal to the number of input planes.
Args:
output_size: the target output size of the image of the form H x W.
Can be a tuple (H, W) or a single H for a square image H x H
H and W can be either a ``int``, or ``None`` which means the size will
be the same as that of the input.
"""
def __init__(self, norm=3, output_size=(1, 1), eps=1e-6, *args, **kwargs):
2020-03-25 10:58:26 +08:00
super(GeneralizedMeanPooling, self).__init__()
assert norm > 0
self.p = float(norm)
self.output_size = output_size
self.eps = eps
def forward(self, x):
x = x.clamp(min=self.eps).pow(self.p)
return F.adaptive_avg_pool2d(x, self.output_size).pow(1. / self.p)
2020-03-25 10:58:26 +08:00
def __repr__(self):
return self.__class__.__name__ + '(' \
+ str(self.p) + ', ' \
+ 'output_size=' + str(self.output_size) + ')'
class GeneralizedMeanPoolingP(GeneralizedMeanPooling):
""" Same, but norm is trainable
"""
def __init__(self, norm=3, output_size=(1, 1), eps=1e-6, *args, **kwargs):
2020-03-25 10:58:26 +08:00
super(GeneralizedMeanPoolingP, self).__init__(norm, output_size, eps)
self.p = nn.Parameter(torch.ones(1) * norm)
class AdaptiveAvgMaxPool(nn.Module):
def __init__(self, output_size=1, *args, **kwargs):
super().__init__()
self.gap = FastGlobalAvgPool()
self.gmp = GlobalMaxPool(output_size)
def forward(self, x):
2020-08-20 15:51:41 +08:00
avg_feat = self.gap(x)
max_feat = self.gmp(x)
feat = avg_feat + max_feat
return feat
class FastGlobalAvgPool(nn.Module):
def __init__(self, flatten=False, *args, **kwargs):
super().__init__()
self.flatten = flatten
def forward(self, x):
if self.flatten:
in_size = x.size()
return x.view((in_size[0], in_size[1], -1)).mean(dim=2)
else:
return x.view(x.size(0), x.size(1), -1).mean(-1).view(x.size(0), x.size(1), 1, 1)
2020-09-01 16:14:45 +08:00
class ClipGlobalAvgPool(nn.Module):
def __init__(self, *args, **kwargs):
2020-09-01 16:14:45 +08:00
super().__init__()
self.avgpool = FastGlobalAvgPool()
2020-09-01 16:14:45 +08:00
def forward(self, x):
x = self.avgpool(x)
x = torch.clamp(x, min=0., max=1.)
return x