fast-reid/projects/FastAttr/fastattr/modeling/attr_head.py

44 lines
1.1 KiB
Python
Raw Normal View History

# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
2020-09-23 19:45:13 +08:00
import torch
import torch.nn.functional as F
from torch import nn
from fastreid.modeling.heads import EmbeddingHead
2021-01-18 11:36:38 +08:00
from fastreid.modeling.heads.build import REID_HEADS_REGISTRY
from fastreid.layers.weight_init import weights_init_kaiming
@REID_HEADS_REGISTRY.register()
class AttrHead(EmbeddingHead):
def __init__(self, cfg):
super().__init__(cfg)
num_classes = cfg.MODEL.HEADS.NUM_CLASSES
self.bnneck = nn.BatchNorm1d(num_classes)
self.bnneck.apply(weights_init_kaiming)
def forward(self, features, targets=None):
"""
See :class:`ReIDHeads.forward`.
"""
pool_feat = self.pool_layer(features)
neck_feat = self.bottleneck(pool_feat)
neck_feat = neck_feat.view(neck_feat.size(0), -1)
logits = F.linear(neck_feat, self.weight)
logits = self.bnneck(logits)
2020-09-23 19:45:13 +08:00
# Evaluation
2021-01-18 11:36:38 +08:00
if not self.training:
cls_outptus = torch.sigmoid(logits)
return cls_outptus
return {
"cls_outputs": logits,
}