fast-reid/tools/train.py

99 lines
2.9 KiB
Python
Raw Normal View History

# encoding: utf-8
"""
@author: sherlock
@contact: sherlockliao01@gmail.com
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import logging
import os
import sys
from pprint import pprint
import torch
from torch import nn
import network
from core.config import opt, update_config
from core.loader import get_data_provider
from core.solver import Solver
2018-09-19 18:17:06 +08:00
from utils.loss import TripletLoss
from utils.lr_scheduler import LRScheduler
FORMAT = '[%(levelname)s]: %(message)s'
logging.basicConfig(
level=logging.INFO,
format=FORMAT,
stream=sys.stdout
)
def train(args):
logging.info('======= user config ======')
logging.info(pprint(opt))
logging.info(pprint(args))
logging.info('======= end ======')
train_data, test_data, num_query = get_data_provider(opt)
net = getattr(network, opt.network.name)(opt.dataset.num_classes, opt.network.last_stride)
net = nn.DataParallel(net).cuda()
optimizer = getattr(torch.optim, opt.train.optimizer)(net.parameters(), lr=opt.train.lr, weight_decay=opt.train.wd)
ce_loss = nn.CrossEntropyLoss()
2018-09-19 18:17:06 +08:00
triplet_loss = TripletLoss(margin=opt.train.margin)
2018-09-19 18:17:06 +08:00
def ce_loss_func(scores, feat, labels):
ce = ce_loss(scores, labels)
return ce
2018-09-19 18:17:06 +08:00
def tri_loss_func(scores, feat, labels):
tri = triplet_loss(feat, labels)[0]
return tri
def ce_tri_loss_func(scores, feat, labels):
ce = ce_loss(scores, labels)
triplet = triplet_loss(feat, labels)[0]
return ce + triplet
if opt.train.loss_fn == 'softmax':
loss_fn = ce_loss_func
elif opt.train.loss_fn == 'triplet':
loss_fn = tri_loss_func
elif opt.train.loss_fn == 'softmax_triplet':
loss_fn = ce_tri_loss_func
else:
raise ValueError('Unknown loss func {}'.format(opt.train.loss_fn))
lr_scheduler = LRScheduler(base_lr=opt.train.lr, step=opt.train.step,
factor=opt.train.factor, warmup_epoch=opt.train.warmup_epoch,
warmup_begin_lr=opt.train.warmup_begin_lr)
mod = Solver(opt, net)
mod.fit(train_data=train_data, test_data=test_data, num_query=num_query, optimizer=optimizer,
criterion=loss_fn, lr_scheduler=lr_scheduler)
def main():
parser = argparse.ArgumentParser(description='reid model training')
parser.add_argument('--config_file', type=str, default=None, required=True,
help='Optional config file for params')
parser.add_argument('--save_dir', type=str, default=None, required=True,
help='model save checkpoint directory')
args = parser.parse_args()
if args.config_file is not None:
update_config(args.config_file)
2018-09-19 18:17:06 +08:00
opt.misc.save_dir = args.save_dir
os.environ["CUDA_VISIBLE_DEVICES"] = opt.network.gpus
train(args)
if __name__ == '__main__':
main()