2020-03-25 10:58:26 +08:00
|
|
|
# encoding: utf-8
|
|
|
|
"""
|
|
|
|
@author: l1aoxingyu
|
|
|
|
@contact: sherlockliao01@gmail.com
|
|
|
|
"""
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from torch import nn
|
|
|
|
|
|
|
|
|
2020-06-12 16:34:03 +08:00
|
|
|
class Flatten(nn.Module):
|
|
|
|
def forward(self, input):
|
|
|
|
return input.view(input.size(0), -1)
|
|
|
|
|
|
|
|
|
2020-03-25 10:58:26 +08:00
|
|
|
class GeneralizedMeanPooling(nn.Module):
|
|
|
|
r"""Applies a 2D power-average adaptive pooling over an input signal composed of several input planes.
|
|
|
|
The function computed is: :math:`f(X) = pow(sum(pow(X, p)), 1/p)`
|
|
|
|
- At p = infinity, one gets Max Pooling
|
|
|
|
- At p = 1, one gets Average Pooling
|
|
|
|
The output is of size H x W, for any input size.
|
|
|
|
The number of output features is equal to the number of input planes.
|
|
|
|
Args:
|
|
|
|
output_size: the target output size of the image of the form H x W.
|
|
|
|
Can be a tuple (H, W) or a single H for a square image H x H
|
|
|
|
H and W can be either a ``int``, or ``None`` which means the size will
|
|
|
|
be the same as that of the input.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, norm, output_size=1, eps=1e-6):
|
|
|
|
super(GeneralizedMeanPooling, self).__init__()
|
|
|
|
assert norm > 0
|
|
|
|
self.p = float(norm)
|
|
|
|
self.output_size = output_size
|
|
|
|
self.eps = eps
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = x.clamp(min=self.eps).pow(self.p)
|
|
|
|
return torch.nn.functional.adaptive_avg_pool2d(x, self.output_size).pow(1. / self.p)
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return self.__class__.__name__ + '(' \
|
|
|
|
+ str(self.p) + ', ' \
|
|
|
|
+ 'output_size=' + str(self.output_size) + ')'
|
|
|
|
|
|
|
|
|
|
|
|
class GeneralizedMeanPoolingP(GeneralizedMeanPooling):
|
|
|
|
""" Same, but norm is trainable
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, norm=3, output_size=1, eps=1e-6):
|
|
|
|
super(GeneralizedMeanPoolingP, self).__init__(norm, output_size, eps)
|
|
|
|
self.p = nn.Parameter(torch.ones(1) * norm)
|
2020-05-28 13:49:39 +08:00
|
|
|
|
|
|
|
|
|
|
|
class AdaptiveAvgMaxPool2d(nn.Module):
|
2020-06-12 16:34:03 +08:00
|
|
|
def __init__(self):
|
2020-05-28 13:49:39 +08:00
|
|
|
super(AdaptiveAvgMaxPool2d, self).__init__()
|
2020-06-12 16:34:03 +08:00
|
|
|
self.avgpool = FastGlobalAvgPool2d()
|
2020-05-28 13:49:39 +08:00
|
|
|
|
|
|
|
def forward(self, x):
|
2020-06-12 16:34:03 +08:00
|
|
|
x_avg = self.avgpool(x, self.output_size)
|
|
|
|
x_max = F.adaptive_max_pool2d(x, 1)
|
2020-05-28 13:49:39 +08:00
|
|
|
x = x_max + x_avg
|
|
|
|
return x
|
|
|
|
|
2020-06-12 16:34:03 +08:00
|
|
|
|
|
|
|
class FastGlobalAvgPool2d(nn.Module):
|
|
|
|
def __init__(self, flatten=False):
|
|
|
|
super(FastGlobalAvgPool2d, self).__init__()
|
|
|
|
self.flatten = flatten
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
if self.flatten:
|
|
|
|
in_size = x.size()
|
|
|
|
return x.view((in_size[0], in_size[1], -1)).mean(dim=2)
|
|
|
|
else:
|
|
|
|
return x.view(x.size(0), x.size(1), -1).mean(-1).view(x.size(0), x.size(1), 1, 1)
|