fast-reid/projects/FastFace/fastface/resnet_ir.py

123 lines
4.7 KiB
Python
Raw Normal View History

2021-01-18 11:36:38 +08:00
# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
from collections import namedtuple
from torch import nn
from fastreid.layers import get_norm, SELayer
from fastreid.modeling.backbones import BACKBONE_REGISTRY
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
class bottleneck_IR(nn.Module):
def __init__(self, in_channel, depth, bn_norm, stride, with_se=False):
super(bottleneck_IR, self).__init__()
if in_channel == depth:
self.shortcut_layer = nn.MaxPool2d(1, stride)
else:
self.shortcut_layer = nn.Sequential(
nn.Conv2d(in_channel, depth, (1, 1), stride, bias=False),
get_norm(bn_norm, depth))
self.res_layer = nn.Sequential(
get_norm(bn_norm, in_channel),
nn.Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
nn.PReLU(depth),
nn.Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
get_norm(bn_norm, depth),
SELayer(depth, 16) if with_se else nn.Identity()
)
def forward(self, x):
shortcut = self.shortcut_layer(x)
res = self.res_layer(x)
return res + shortcut
class Bottleneck(namedtuple("Block", ["in_channel", "depth", "bn_norm", "stride", "with_se"])):
"""A named tuple describing a ResNet block."""
def get_block(in_channel, depth, bn_norm, num_units, with_se, stride=2):
return [Bottleneck(in_channel, depth, bn_norm, stride, with_se)] + \
[Bottleneck(depth, depth, bn_norm, 1, with_se) for _ in range(num_units - 1)]
def get_blocks(bn_norm, with_se, num_layers):
if num_layers == "50x":
blocks = [
get_block(in_channel=64, depth=64, bn_norm=bn_norm, num_units=3, with_se=with_se),
get_block(in_channel=64, depth=128, bn_norm=bn_norm, num_units=4, with_se=with_se),
get_block(in_channel=128, depth=256, bn_norm=bn_norm, num_units=14, with_se=with_se),
get_block(in_channel=256, depth=512, bn_norm=bn_norm, num_units=3, with_se=with_se)
]
elif num_layers == "100x":
blocks = [
get_block(in_channel=64, depth=64, bn_norm=bn_norm, num_units=3, with_se=with_se),
get_block(in_channel=64, depth=128, bn_norm=bn_norm, num_units=13, with_se=with_se),
get_block(in_channel=128, depth=256, bn_norm=bn_norm, num_units=30, with_se=with_se),
get_block(in_channel=256, depth=512, bn_norm=bn_norm, num_units=3, with_se=with_se)
]
elif num_layers == "152x":
blocks = [
get_block(in_channel=64, depth=64, bn_norm=bn_norm, num_units=3, with_se=with_se),
get_block(in_channel=64, depth=128, bn_norm=bn_norm, num_units=8, with_se=with_se),
get_block(in_channel=128, depth=256, bn_norm=bn_norm, num_units=36, with_se=with_se),
get_block(in_channel=256, depth=512, bn_norm=bn_norm, num_units=3, with_se=with_se)
]
return blocks
class ResNetIR(nn.Module):
def __init__(self, num_layers, bn_norm, drop_ratio, with_se):
super(ResNetIR, self).__init__()
assert num_layers in ["50x", "100x", "152x"], "num_layers should be 50,100, or 152"
blocks = get_blocks(bn_norm, with_se, num_layers)
self.input_layer = nn.Sequential(nn.Conv2d(3, 64, (3, 3), 1, 1, bias=False),
get_norm(bn_norm, 64),
nn.PReLU(64))
self.output_layer = nn.Sequential(get_norm(bn_norm, 512),
nn.Dropout(drop_ratio))
modules = []
for block in blocks:
for bottleneck in block:
modules.append(
bottleneck_IR(bottleneck.in_channel,
bottleneck.depth,
bottleneck.bn_norm,
bottleneck.stride,
bottleneck.with_se))
self.body = nn.Sequential(*modules)
def forward(self, x):
x = self.input_layer(x)
x = self.body(x)
x = self.output_layer(x)
return x
@BACKBONE_REGISTRY.register()
def build_resnetIR_backbone(cfg):
"""
Create a ResNetIR instance from config.
Returns:
ResNet: a :class:`ResNet` instance.
"""
# fmt: off
bn_norm = cfg.MODEL.BACKBONE.NORM
with_se = cfg.MODEL.BACKBONE.WITH_SE
depth = cfg.MODEL.BACKBONE.DEPTH
# fmt: on
model = ResNetIR(depth, bn_norm, 0.5, with_se)
return model