fast-reid/fastreid/modeling/backbones/resnet.py

192 lines
6.5 KiB
Python
Raw Normal View History

2020-02-10 07:38:56 +08:00
# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
import logging
import math
import torch
from torch import nn
from torch.utils import model_zoo
from .build import BACKBONE_REGISTRY
model_urls = {
18: 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
34: 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
50: 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
101: 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
152: 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
# 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
# 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
# 'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
# 'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
}
__all__ = ['ResNet', 'Bottleneck']
class IBN(nn.Module):
def __init__(self, planes):
super(IBN, self).__init__()
half1 = int(planes / 2)
self.half = half1
half2 = planes - half1
self.IN = nn.InstanceNorm2d(half1, affine=True)
self.BN = nn.BatchNorm2d(half2)
def forward(self, x):
split = torch.split(x, self.half, 1)
out1 = self.IN(split[0].contiguous())
out2 = self.BN(split[1].contiguous())
out = torch.cat((out1, out2), 1)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, with_ibn=False, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
if with_ibn:
self.bn1 = IBN(planes)
else:
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, last_stride, with_ibn, with_se, block, layers):
scale = 64
self.inplanes = scale
super().__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, scale, layers[0], with_ibn=with_ibn)
self.layer2 = self._make_layer(block, scale * 2, layers[1], stride=2, with_ibn=with_ibn)
self.layer3 = self._make_layer(block, scale * 4, layers[2], stride=2, with_ibn=with_ibn)
self.layer4 = self._make_layer(block, scale * 8, layers[3], stride=last_stride)
self.random_init()
def _make_layer(self, block, planes, blocks, stride=1, with_ibn=False):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
if planes == 512:
with_ibn = False
layers.append(block(self.inplanes, planes, with_ibn, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, with_ibn))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def random_init(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
nn.init.normal_(m.weight, 0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
@BACKBONE_REGISTRY.register()
def build_resnet_backbone(cfg):
"""
Create a ResNet instance from config.
Returns:
ResNet: a :class:`ResNet` instance.
"""
# fmt: off
pretrain = cfg.MODEL.BACKBONE.PRETRAIN
pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH
last_stride = cfg.MODEL.BACKBONE.LAST_STRIDE
with_ibn = cfg.MODEL.BACKBONE.WITH_IBN
with_se = cfg.MODEL.BACKBONE.WITH_SE
depth = cfg.MODEL.BACKBONE.DEPTH
num_blocks_per_stage = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3]}[depth]
model = ResNet(last_stride, with_ibn, with_se, Bottleneck, num_blocks_per_stage)
if pretrain:
if not with_ibn:
# original resnet
state_dict = model_zoo.load_url(model_urls[depth])
# remove fully-connected-layers
state_dict.pop('fc.weight')
state_dict.pop('fc.bias')
else:
# ibn resnet
state_dict = torch.load(pretrain_path)['state_dict']
# remove fully-connected-layers
state_dict.pop('module.fc.weight')
state_dict.pop('module.fc.bias')
# remove module in name
new_state_dict = {}
for k in state_dict:
new_k = '.'.join(k.split('.')[1:])
if model.state_dict()[new_k].shape == state_dict[k].shape:
new_state_dict[new_k] = state_dict[k]
state_dict = new_state_dict
res = model.load_state_dict(state_dict, strict=False)
logger = logging.getLogger(__name__)
logger.info('missing keys is {}'.format(res.missing_keys))
logger.info('unexpected keys is {}'.format(res.unexpected_keys))
2020-02-10 07:38:56 +08:00
return model