fast-reid/projects/StrongBaseline/README.md

43 lines
1.1 KiB
Markdown
Raw Normal View History

# Strong Baseline in FastReID
## Training
2020-02-13 20:37:08 +08:00
To train a model, run
```bash
CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file <config.yaml>
```
For example, to launch a end-to-end baseline training on market1501 dataset with ibn-net on 4 GPUs,
one should excute:
```bash
CUDA_VISIBLE_DEVICES=0,1,2,3 python train_net.py --config-file='configs/baseline_ibn_market1501.yml'
```
## Experimental Results
### Market1501 dataset
| Method | Pretrained | Rank@1 | mAP |
| :---: | :---: | :---: |:---: |
| BagTricks | ImageNet | 93.3% | 85.2% |
| BagTricks + Ibn-a | ImageNet | 94.9% | 87.1% |
| BagTricks + Ibn-a + softMargin | ImageNet | 94.8% | 87.7% |
### DukeMTMC dataset
| Method | Pretrained | Rank@1 | mAP |
| :---: | :---: | :---: |:---: |
| BagTricks | ImageNet | 86.6% | 77.3% |
| BagTricks + Ibn-a | ImageNet | 88.8% | 78.6% |
| BagTricks + Ibn-a + softMargin | ImageNet | 89.1% | 78.9% |
### MSMT17 dataset
| Method | Pretrained | Rank@1 | mAP |
| :---: | :---: | :---: |:---: |
| BagTricks | ImageNet | 72.0% | 48.6% |
| BagTricks + Ibn-a | ImageNet | 77.7% | 54.6% |
| BagTricks + Ibn-a + softMargin | ImageNet | 77.3% | 55.7% |