2020-02-11 22:38:40 +08:00
|
|
|
# Strong Baseline in FastReID
|
|
|
|
|
2020-02-13 00:19:15 +08:00
|
|
|
## Training
|
2020-02-13 20:37:08 +08:00
|
|
|
|
2020-02-13 00:19:15 +08:00
|
|
|
To train a model, run
|
|
|
|
|
|
|
|
```bash
|
|
|
|
CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file <config.yaml>
|
|
|
|
```
|
|
|
|
|
|
|
|
For example, to launch a end-to-end baseline training on market1501 dataset with ibn-net on 4 GPUs,
|
|
|
|
one should excute:
|
|
|
|
|
|
|
|
```bash
|
|
|
|
CUDA_VISIBLE_DEVICES=0,1,2,3 python train_net.py --config-file='configs/baseline_ibn_market1501.yml'
|
|
|
|
```
|
|
|
|
|
2020-02-11 22:38:40 +08:00
|
|
|
## Experimental Results
|
|
|
|
|
|
|
|
### Market1501 dataset
|
|
|
|
|
|
|
|
| Method | Pretrained | Rank@1 | mAP |
|
|
|
|
| :---: | :---: | :---: |:---: |
|
|
|
|
| BagTricks | ImageNet | 93.3% | 85.2% |
|
|
|
|
| BagTricks + Ibn-a | ImageNet | 94.9% | 87.1% |
|
2020-02-13 00:19:15 +08:00
|
|
|
| BagTricks + Ibn-a + softMargin | ImageNet | 94.8% | 87.7% |
|
2020-02-11 22:38:40 +08:00
|
|
|
|
|
|
|
### DukeMTMC dataset
|
|
|
|
|
|
|
|
| Method | Pretrained | Rank@1 | mAP |
|
|
|
|
| :---: | :---: | :---: |:---: |
|
|
|
|
| BagTricks | ImageNet | 86.6% | 77.3% |
|
|
|
|
| BagTricks + Ibn-a | ImageNet | 88.8% | 78.6% |
|
2020-02-13 00:19:15 +08:00
|
|
|
| BagTricks + Ibn-a + softMargin | ImageNet | 89.1% | 78.9% |
|
2020-02-11 22:38:40 +08:00
|
|
|
|
|
|
|
### MSMT17 dataset
|
|
|
|
|
|
|
|
| Method | Pretrained | Rank@1 | mAP |
|
|
|
|
| :---: | :---: | :---: |:---: |
|
2020-02-13 00:19:15 +08:00
|
|
|
| BagTricks | ImageNet | 72.0% | 48.6% |
|
|
|
|
| BagTricks + Ibn-a | ImageNet | 77.7% | 54.6% |
|
|
|
|
| BagTricks + Ibn-a + softMargin | ImageNet | 77.3% | 55.7% |
|