mirror of https://github.com/JDAI-CV/fast-reid.git
37 lines
1.0 KiB
Python
37 lines
1.0 KiB
Python
|
# encoding: utf-8
|
||
|
"""
|
||
|
@author: xingyu liao
|
||
|
@contact: sherlockliao01@gmail.com
|
||
|
"""
|
||
|
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
from fastreid.modeling.heads import REID_HEADS_REGISTRY, EmbeddingHead
|
||
|
|
||
|
|
||
|
@REID_HEADS_REGISTRY.register()
|
||
|
class ClasHead(EmbeddingHead):
|
||
|
def forward(self, features, targets=None):
|
||
|
"""
|
||
|
See :class:`ClsHeads.forward`.
|
||
|
"""
|
||
|
pool_feat = self.pool_layer(features)
|
||
|
neck_feat = self.bottleneck(pool_feat)
|
||
|
neck_feat = neck_feat.view(neck_feat.size(0), -1)
|
||
|
|
||
|
if self.cls_layer.__class__.__name__ == 'Linear':
|
||
|
logits = F.linear(neck_feat, self.weight)
|
||
|
else:
|
||
|
logits = F.linear(F.normalize(neck_feat), F.normalize(self.weight))
|
||
|
|
||
|
# Evaluation
|
||
|
if not self.training: return logits * self.cls_layer.s
|
||
|
|
||
|
cls_outputs = self.cls_layer(logits, targets)
|
||
|
|
||
|
return {
|
||
|
"cls_outputs": cls_outputs,
|
||
|
"pred_class_logits": logits * self.cls_layer.s,
|
||
|
"features": neck_feat,
|
||
|
}
|