fast-reid/fastreid/data/transforms/transforms.py

244 lines
8.0 KiB
Python
Raw Normal View History

2020-02-10 07:38:56 +08:00
# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
__all__ = ['ToTensor', 'RandomErasing', 'Cutout', 'random_angle_rotate',
'do_color', 'random_shift', 'random_scale']
2020-02-10 07:38:56 +08:00
import math
import random
import cv2
2020-02-10 07:38:56 +08:00
import numpy as np
from .functional import to_tensor
class ToTensor(object):
"""Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
Converts a PIL Image or numpy.ndarray (H x W x C) in the range
[0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
or if the numpy.ndarray has dtype = np.uint8
In the other cases, tensors are returned without scaling.
"""
def __call__(self, pic):
"""
Args:
pic (PIL Image or numpy.ndarray): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
return to_tensor(pic)
def __repr__(self):
return self.__class__.__name__ + '()'
2020-02-10 07:38:56 +08:00
class RandomErasing(object):
""" Randomly selects a rectangle region in an image and erases its pixels.
'Random Erasing Data Augmentation' by Zhong et al.
See https://arxiv.org/pdf/1708.04896.pdf
Args:
probability: The probability that the Random Erasing operation will be performed.
sl: Minimum proportion of erased area against input image.
sh: Maximum proportion of erased area against input image.
r1: Minimum aspect ratio of erased area.
mean: Erasing value.
"""
def __init__(self, probability=0.5, sl=0.02, sh=0.4, r1=0.3, mean=255 * (0.49735, 0.4822, 0.4465)):
self.probability = probability
self.mean = mean
self.sl = sl
self.sh = sh
self.r1 = r1
def __call__(self, img):
2020-02-10 22:13:04 +08:00
img = np.asarray(img, dtype=np.float32).copy()
2020-02-10 07:38:56 +08:00
if random.uniform(0, 1) > self.probability:
return img
for attempt in range(100):
area = img.shape[0] * img.shape[1]
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.r1, 1 / self.r1)
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < img.shape[1] and h < img.shape[0]:
x1 = random.randint(0, img.shape[0] - h)
y1 = random.randint(0, img.shape[1] - w)
if img.shape[2] == 3:
img[x1:x1 + h, y1:y1 + w, 0] = self.mean[0]
img[x1:x1 + h, y1:y1 + w, 1] = self.mean[1]
img[x1:x1 + h, y1:y1 + w, 2] = self.mean[2]
else:
img[x1:x1 + h, y1:y1 + w, 0] = self.mean[0]
2020-02-10 22:13:04 +08:00
return img
return img
2020-02-10 07:38:56 +08:00
class Cutout(object):
def __init__(self, probability=0.5, size=64, mean=255 * [0.4914, 0.4822, 0.4465]):
self.probability = probability
self.mean = mean
self.size = size
def __call__(self, img):
2020-03-25 10:58:26 +08:00
img = np.asarray(img, dtype=np.float32).copy()
2020-02-10 07:38:56 +08:00
if random.uniform(0, 1) > self.probability:
return img
h = self.size
w = self.size
for attempt in range(100):
if w < img.shape[1] and h < img.shape[0]:
x1 = random.randint(0, img.shape[0] - h)
y1 = random.randint(0, img.shape[1] - w)
if img.shape[2] == 3:
img[x1:x1 + h, y1:y1 + w, 0] = self.mean[0]
img[x1:x1 + h, y1:y1 + w, 1] = self.mean[1]
img[x1:x1 + h, y1:y1 + w, 2] = self.mean[2]
else:
img[x1:x1 + h, y1:y1 + w, 0] = self.mean[0]
return img
return img
class random_angle_rotate(object):
def __init__(self, probability=0.5):
self.probability = probability
def rotate(self, image, angle, center=None, scale=1.0):
(h, w) = image.shape[:2]
if center is None:
center = (w / 2, h / 2)
M = cv2.getRotationMatrix2D(center, angle, scale)
rotated = cv2.warpAffine(image, M, (w, h))
return rotated
def __call__(self, image, angles=[-30, 30]):
image = np.asarray(image, dtype=np.uint8).copy()
if random.uniform(0, 1) > self.probability:
return image
angle = random.randint(0, angles[1] - angles[0]) + angles[0]
image = self.rotate(image, angle)
return image
class do_color(object):
"""docstring for do_color"""
def __init__(self, probability=0.5):
self.probability = probability
def do_brightness_shift(self, image, alpha=0.125):
image = image.astype(np.float32)
image = image + alpha * 255
image = np.clip(image, 0, 255).astype(np.uint8)
return image
def do_brightness_multiply(self, image, alpha=1):
image = image.astype(np.float32)
image = alpha * image
image = np.clip(image, 0, 255).astype(np.uint8)
return image
def do_contrast(self, image, alpha=1.0):
image = image.astype(np.float32)
gray = image * np.array([[[0.114, 0.587, 0.299]]]) # rgb to gray (YCbCr)
gray = (3.0 * (1.0 - alpha) / gray.size) * np.sum(gray)
image = alpha * image + gray
image = np.clip(image, 0, 255).astype(np.uint8)
return image
# https://www.pyimagesearch.com/2015/10/05/opencv-gamma-correction/
def do_gamma(self, image, gamma=1.0):
table = np.array([((i / 255.0) ** (1.0 / gamma)) * 255
for i in np.arange(0, 256)]).astype("uint8")
return cv2.LUT(image, table) # apply gamma correction using the lookup table
def do_clahe(self, image, clip=2, grid=16):
grid = int(grid)
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
gray, a, b = cv2.split(lab)
gray = cv2.createCLAHE(clipLimit=clip, tileGridSize=(grid, grid)).apply(gray)
lab = cv2.merge((gray, a, b))
image = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)
return image
def __call__(self, image):
if random.uniform(0, 1) > self.probability:
return image
index = random.randint(0, 4)
if index == 0:
image = self.do_brightness_shift(image, 0.1)
elif index == 1:
image = self.do_gamma(image, 1)
elif index == 2:
image = self.do_clahe(image)
elif index == 3:
image = self.do_brightness_multiply(image)
elif index == 4:
image = self.do_contrast(image)
return image
class random_shift(object):
"""docstring for do_color"""
def __init__(self, probability=0.5):
self.probability = probability
def __call__(self, image):
if random.uniform(0, 1) > self.probability:
return image
width, height, d = image.shape
zero_image = np.zeros_like(image)
w = random.randint(0, 20) - 10
h = random.randint(0, 30) - 15
zero_image[max(0, w): min(w + width, width), max(h, 0): min(h + height, height)] = \
image[max(0, -w): min(-w + width, width), max(-h, 0): min(-h + height, height)]
image = zero_image.copy()
return image
class random_scale(object):
"""docstring for do_color"""
def __init__(self, probability=0.5):
self.probability = probability
def __call__(self, image):
if random.uniform(0, 1) > self.probability:
return image
scale = random.random() * 0.1 + 0.9
assert 0.9 <= scale <= 1
width, height, d = image.shape
zero_image = np.zeros_like(image)
new_width = round(width * scale)
new_height = round(height * scale)
image = cv2.resize(image, (new_height, new_width))
start_w = random.randint(0, width - new_width)
start_h = random.randint(0, height - new_height)
zero_image[start_w: start_w + new_width,
start_h:start_h + new_height] = image
image = zero_image.copy()
return image