fast-reid/fastreid/data/samplers/triplet_sampler.py

152 lines
5.2 KiB
Python
Raw Normal View History

2020-02-10 07:38:56 +08:00
# encoding: utf-8
"""
@author: liaoxingyu
@contact: liaoxingyu2@jd.com
"""
2020-02-10 22:13:04 +08:00
import random
2020-02-10 07:38:56 +08:00
from collections import defaultdict
import copy
2020-02-10 07:38:56 +08:00
import numpy as np
import torch
from torch.utils.data.sampler import Sampler
def No_index(a, b):
assert isinstance(a, list)
return [i for i, j in enumerate(a) if j != b]
class BalancedIdentitySampler(Sampler):
2020-02-10 07:38:56 +08:00
def __init__(self, data_source, batch_size, num_instances=4):
self.data_source = data_source
self.batch_size = batch_size
self.num_instances = num_instances
self.num_pids_per_batch = batch_size // self.num_instances
self.index_pid = defaultdict(list)
self.pid_cam = defaultdict(list)
self.pid_index = defaultdict(list)
for index, info in enumerate(data_source):
pid = info[1]
camid = info[2]
self.index_pid[index] = pid
self.pid_cam[pid].append(camid)
self.pid_index[pid].append(index)
self.pids = list(self.pid_index.keys())
self.num_identities = len(self.pids)
self._seed = 0
self._shuffle = True
def __iter__(self):
indices = self._infinite_indices()
for kid in indices:
i = random.choice(self.pid_index[self.pids[kid]])
_, i_pid, i_cam = self.data_source[i]
ret = [i]
pid_i = self.index_pid[i]
cams = self.pid_cam[pid_i]
index = self.pid_index[pid_i]
select_cams = No_index(cams, i_cam)
if select_cams:
if len(select_cams) >= self.num_instances:
cam_indexes = np.random.choice(select_cams, size=self.num_instances - 1, replace=False)
else:
cam_indexes = np.random.choice(select_cams, size=self.num_instances - 1, replace=True)
for kk in cam_indexes:
ret.append(index[kk])
else:
select_indexes = No_index(index, i)
if not select_indexes:
# only one image for this identity
ind_indexes = [0] * (self.num_instances - 1)
2020-02-10 07:38:56 +08:00
elif len(select_indexes) >= self.num_instances:
ind_indexes = np.random.choice(select_indexes, size=self.num_instances - 1, replace=False)
else:
ind_indexes = np.random.choice(select_indexes, size=self.num_instances - 1, replace=True)
for kk in ind_indexes:
ret.append(index[kk])
yield from ret
def _infinite_indices(self):
np.random.seed(self._seed)
2020-02-10 07:38:56 +08:00
while True:
if self._shuffle:
identities = np.random.permutation(self.num_identities)
2020-02-10 07:38:56 +08:00
else:
identities = np.arange(self.num_identities)
2020-02-10 07:38:56 +08:00
drop_indices = self.num_identities % self.num_pids_per_batch
if drop_indices == 0:
yield from identities
2020-02-10 07:38:56 +08:00
yield from identities[:-drop_indices]
class NaiveIdentitySampler(Sampler):
"""
Randomly sample N identities, then for each identity,
randomly sample K instances, therefore batch size is N*K.
Args:
- data_source (list): list of (img_path, pid, camid).
- num_instances (int): number of instances per identity in a batch.
- batch_size (int): number of examples in a batch.
"""
def __init__(self, data_source, batch_size, num_instances):
self.data_source = data_source
self.batch_size = batch_size
self.num_instances = num_instances
self.num_pids_per_batch = batch_size // self.num_instances
self.index_pid = defaultdict(list)
self.pid_cam = defaultdict(list)
self.pid_index = defaultdict(list)
for index, info in enumerate(data_source):
pid = info[1]
camid = info[2]
self.index_pid[index] = pid
self.pid_cam[pid].append(camid)
self.pid_index[pid].append(index)
self.pids = list(self.pid_index.keys())
self.num_identities = len(self.pids)
self._seed = 0
def __iter__(self):
np.random.seed(self._seed)
while True:
batch_idxs_dict = defaultdict(list)
for pid in self.pids:
idxs = copy.deepcopy(self.pid_index[pid])
if len(idxs) < self.num_instances:
idxs = np.random.choice(idxs, size=self.num_instances, replace=True)
random.shuffle(idxs)
batch_idxs = []
for idx in idxs:
batch_idxs.append(idx)
if len(batch_idxs) == self.num_instances:
batch_idxs_dict[pid].append(batch_idxs)
batch_idxs = []
avai_pids = copy.deepcopy(self.pids)
final_idxs = []
while len(avai_pids) >= self.num_pids_per_batch:
selected_pids = random.sample(avai_pids, self.num_pids_per_batch)
for pid in selected_pids:
batch_idxs = batch_idxs_dict[pid].pop(0)
final_idxs.extend(batch_idxs)
if len(batch_idxs_dict[pid]) == 0:
avai_pids.remove(pid)
yield from final_idxs