mirror of https://github.com/JDAI-CV/fast-reid.git
45 lines
1.1 KiB
Python
45 lines
1.1 KiB
Python
|
# encoding: utf-8
|
||
|
"""
|
||
|
@author: xingyu liao
|
||
|
@contact: sherlockliao01@gmail.com
|
||
|
"""
|
||
|
|
||
|
import os
|
||
|
from glob import glob
|
||
|
|
||
|
from fastreid.data.datasets import DATASET_REGISTRY
|
||
|
from fastreid.data.datasets.bases import ImageDataset
|
||
|
|
||
|
__all__ = ['GRID', ]
|
||
|
|
||
|
|
||
|
@DATASET_REGISTRY.register()
|
||
|
class GRID(ImageDataset):
|
||
|
"""GRID
|
||
|
"""
|
||
|
dataset_dir = "underground_reid"
|
||
|
dataset_name = 'grid'
|
||
|
|
||
|
def __init__(self, root='datasets', **kwargs):
|
||
|
self.root = root
|
||
|
self.train_path = os.path.join(self.root, self.dataset_dir, 'images')
|
||
|
|
||
|
required_files = [self.train_path]
|
||
|
self.check_before_run(required_files)
|
||
|
|
||
|
train = self.process_train(self.train_path)
|
||
|
|
||
|
super().__init__(train, [], [], **kwargs)
|
||
|
|
||
|
def process_train(self, train_path):
|
||
|
data = []
|
||
|
img_paths = glob(os.path.join(train_path, "*.jpeg"))
|
||
|
|
||
|
for img_path in img_paths:
|
||
|
img_name = os.path.basename(img_path)
|
||
|
img_info = img_name.split('_')
|
||
|
pid = self.dataset_name + "_" + img_info[0]
|
||
|
camid = self.dataset_name + "_" + img_info[1]
|
||
|
data.append([img_path, pid, camid])
|
||
|
return data
|