mirror of https://github.com/JDAI-CV/fast-reid.git
53 lines
1.8 KiB
Python
53 lines
1.8 KiB
Python
|
# encoding: utf-8
|
||
|
"""
|
||
|
@author: xingyu liao
|
||
|
@contact: sherlockliao01@gmail.com
|
||
|
"""
|
||
|
|
||
|
import torch
|
||
|
from ray import tune
|
||
|
|
||
|
from fastreid.engine.hooks import EvalHook, flatten_results_dict
|
||
|
from fastreid.utils.checkpoint import Checkpointer
|
||
|
|
||
|
|
||
|
class TuneReportHook(EvalHook):
|
||
|
def __init__(self, eval_period, eval_function):
|
||
|
super().__init__(eval_period, eval_function)
|
||
|
self.step = 0
|
||
|
|
||
|
def _do_eval(self):
|
||
|
results = self._func()
|
||
|
|
||
|
if results:
|
||
|
assert isinstance(
|
||
|
results, dict
|
||
|
), "Eval function must return a dict. Got {} instead.".format(results)
|
||
|
|
||
|
flattened_results = flatten_results_dict(results)
|
||
|
for k, v in flattened_results.items():
|
||
|
try:
|
||
|
v = float(v)
|
||
|
except Exception:
|
||
|
raise ValueError(
|
||
|
"[EvalHook] eval_function should return a nested dict of float. "
|
||
|
"Got '{}: {}' instead.".format(k, v)
|
||
|
)
|
||
|
|
||
|
# Remove extra memory cache of main process due to evaluation
|
||
|
torch.cuda.empty_cache()
|
||
|
|
||
|
self.step += 1
|
||
|
|
||
|
# Here we save a checkpoint. It is automatically registered with
|
||
|
# RayTune and will potentially be passed as the `checkpoint_dir`
|
||
|
# parameter in future iterations.
|
||
|
with tune.checkpoint_dir(step=self.step) as checkpoint_dir:
|
||
|
additional_state = {"epoch": int(self.trainer.epoch)}
|
||
|
# Change path of save dir where tune can find
|
||
|
self.trainer.checkpointer.save_dir = checkpoint_dir
|
||
|
self.trainer.checkpointer.save(name="checkpoint", **additional_state)
|
||
|
|
||
|
metrics = dict(r1=results["Rank-1"], map=results["mAP"], score=(results["Rank-1"] + results["mAP"]) / 2)
|
||
|
tune.report(**metrics)
|