fast-reid/projects/PartialReID/partialreid/dsr_evaluation.py

90 lines
3.1 KiB
Python
Raw Normal View History

2020-05-21 23:58:35 +08:00
# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
import copy
import logging
from collections import OrderedDict
import numpy as np
import torch
import torch.nn.functional as F
from fastreid.evaluation.evaluator import DatasetEvaluator
from fastreid.evaluation.rank import evaluate_rank
from fastreid.evaluation.roc import evaluate_roc
from .dsr_distance import get_dsr_dist
logger = logging.getLogger('fastreid.' + __name__)
class DsrEvaluator(DatasetEvaluator):
def __init__(self, cfg, num_query, output_dir=None):
self.cfg = cfg
self._num_query = num_query
self._output_dir = output_dir
self.features = []
self.spatial_features = []
self.scores = []
self.pids = []
self.camids = []
def reset(self):
self.features = []
self.spatial_features = []
self.scores = []
self.pids = []
self.camids = []
def process(self, outputs):
self.features.append(outputs[0][0].cpu())
outputs1 = F.normalize(outputs[0][1].data).cpu().numpy()
self.spatial_features.append(outputs1)
self.scores.append(outputs[0][2])
self.pids.extend(outputs[1].cpu().numpy())
self.camids.extend(outputs[2].cpu().numpy())
def evaluate(self):
features = torch.cat(self.features, dim=0)
spatial_features = np.vstack(self.spatial_features)
scores = torch.cat(self.scores, dim=0)
# query feature, person ids and camera ids
query_features = features[:self._num_query]
query_pids = np.asarray(self.pids[:self._num_query])
query_camids = np.asarray(self.camids[:self._num_query])
# gallery features, person ids and camera ids
gallery_features = features[self._num_query:]
gallery_pids = np.asarray(self.pids[self._num_query:])
gallery_camids = np.asarray(self.camids[self._num_query:])
self._results = OrderedDict()
query_features = F.normalize(query_features, dim=1)
gallery_features = F.normalize(gallery_features, dim=1)
dist = 1 - torch.mm(query_features, gallery_features.t()).numpy()
if self.cfg.TEST.DSR.ENABLED:
dsr_dist = get_dsr_dist(spatial_features[:self._num_query], spatial_features[self._num_query:], dist,
scores[:self._num_query])
logger.info("Test with DSR setting")
lamb = self.cfg.TEST.DSR.LAMB
dist = (1 - lamb) * dist + lamb * dsr_dist
cmc, all_AP, all_INP = evaluate_rank(dist, query_pids, gallery_pids, query_camids, gallery_camids)
mAP = np.mean(all_AP)
mINP = np.mean(all_INP)
for r in [1, 5, 10]:
self._results['Rank-{}'.format(r)] = cmc[r - 1]
self._results['mAP'] = mAP
self._results['mINP'] = mINP
tprs = evaluate_roc(dist, query_pids, gallery_pids, query_camids, gallery_camids)
fprs = [1e-4, 1e-3, 1e-2]
for i in range(len(fprs)):
self._results["TPR@FPR={}".format(fprs[i])] = tprs[i]
return copy.deepcopy(self._results)