fast-reid/fastreid/data/samplers/triplet_sampler.py

86 lines
2.9 KiB
Python
Raw Normal View History

2020-02-10 07:38:56 +08:00
# encoding: utf-8
"""
@author: liaoxingyu
@contact: liaoxingyu2@jd.com
"""
2020-02-10 22:13:04 +08:00
import random
2020-02-10 07:38:56 +08:00
from collections import defaultdict
import numpy as np
import torch
from torch.utils.data.sampler import Sampler
def No_index(a, b):
assert isinstance(a, list)
return [i for i, j in enumerate(a) if j != b]
class RandomIdentitySampler(Sampler):
def __init__(self, data_source, batch_size, num_instances=4):
self.data_source = data_source
self.batch_size = batch_size
self.num_instances = num_instances
self.num_pids_per_batch = batch_size // self.num_instances
self.index_pid = defaultdict(list)
self.pid_cam = defaultdict(list)
self.pid_index = defaultdict(list)
for index, info in enumerate(data_source):
pid = info[1]
camid = info[2]
self.index_pid[index] = pid
self.pid_cam[pid].append(camid)
self.pid_index[pid].append(index)
self.pids = list(self.pid_index.keys())
self.num_identities = len(self.pids)
self._seed = 0
self._shuffle = True
def __iter__(self):
indices = self._infinite_indices()
for kid in indices:
i = random.choice(self.pid_index[self.pids[kid]])
_, i_pid, i_cam = self.data_source[i]
ret = [i]
pid_i = self.index_pid[i]
cams = self.pid_cam[pid_i]
index = self.pid_index[pid_i]
select_cams = No_index(cams, i_cam)
if select_cams:
if len(select_cams) >= self.num_instances:
cam_indexes = np.random.choice(select_cams, size=self.num_instances - 1, replace=False)
else:
cam_indexes = np.random.choice(select_cams, size=self.num_instances - 1, replace=True)
for kk in cam_indexes:
ret.append(index[kk])
else:
select_indexes = No_index(index, i)
if not select_indexes:
# only one image for this identity
ind_indexes = [i] * (self.num_instances - 1)
elif len(select_indexes) >= self.num_instances:
ind_indexes = np.random.choice(select_indexes, size=self.num_instances - 1, replace=False)
else:
ind_indexes = np.random.choice(select_indexes, size=self.num_instances - 1, replace=True)
for kk in ind_indexes:
ret.append(index[kk])
yield from ret
def _infinite_indices(self):
np.random.seed(self._seed)
2020-02-10 07:38:56 +08:00
while True:
if self._shuffle:
identities = np.random.permutation(self.num_identities)
2020-02-10 07:38:56 +08:00
else:
identities = np.arange(self.num_identities)
2020-02-10 07:38:56 +08:00
drop_indices = self.num_identities % self.num_pids_per_batch
yield from identities[:-drop_indices]