2020-02-10 07:38:56 +08:00
|
|
|
# encoding: utf-8
|
|
|
|
"""
|
|
|
|
@author: liaoxingyu
|
|
|
|
@contact: liaoxingyu2@jd.com
|
|
|
|
"""
|
|
|
|
|
2020-02-10 22:13:04 +08:00
|
|
|
import random
|
2020-02-10 07:38:56 +08:00
|
|
|
from collections import defaultdict
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
from torch.utils.data.sampler import Sampler
|
|
|
|
|
|
|
|
|
|
|
|
def No_index(a, b):
|
|
|
|
assert isinstance(a, list)
|
|
|
|
return [i for i, j in enumerate(a) if j != b]
|
|
|
|
|
|
|
|
|
|
|
|
class RandomIdentitySampler(Sampler):
|
|
|
|
def __init__(self, data_source, batch_size, num_instances=4):
|
|
|
|
self.data_source = data_source
|
|
|
|
self.batch_size = batch_size
|
|
|
|
self.num_instances = num_instances
|
|
|
|
self.num_pids_per_batch = batch_size // self.num_instances
|
|
|
|
|
|
|
|
self.index_pid = defaultdict(list)
|
|
|
|
self.pid_cam = defaultdict(list)
|
|
|
|
self.pid_index = defaultdict(list)
|
|
|
|
|
|
|
|
for index, info in enumerate(data_source):
|
|
|
|
pid = info[1]
|
|
|
|
camid = info[2]
|
|
|
|
self.index_pid[index] = pid
|
|
|
|
self.pid_cam[pid].append(camid)
|
|
|
|
self.pid_index[pid].append(index)
|
|
|
|
|
|
|
|
self.pids = list(self.pid_index.keys())
|
|
|
|
self.num_identities = len(self.pids)
|
|
|
|
|
|
|
|
self._seed = 0
|
|
|
|
self._shuffle = True
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
indices = self._infinite_indices()
|
|
|
|
for kid in indices:
|
|
|
|
i = random.choice(self.pid_index[self.pids[kid]])
|
|
|
|
_, i_pid, i_cam = self.data_source[i]
|
|
|
|
ret = [i]
|
|
|
|
pid_i = self.index_pid[i]
|
|
|
|
cams = self.pid_cam[pid_i]
|
|
|
|
index = self.pid_index[pid_i]
|
|
|
|
select_cams = No_index(cams, i_cam)
|
|
|
|
|
|
|
|
if select_cams:
|
|
|
|
if len(select_cams) >= self.num_instances:
|
|
|
|
cam_indexes = np.random.choice(select_cams, size=self.num_instances - 1, replace=False)
|
|
|
|
else:
|
|
|
|
cam_indexes = np.random.choice(select_cams, size=self.num_instances - 1, replace=True)
|
|
|
|
for kk in cam_indexes:
|
|
|
|
ret.append(index[kk])
|
|
|
|
else:
|
|
|
|
select_indexes = No_index(index, i)
|
|
|
|
if not select_indexes:
|
|
|
|
# only one image for this identity
|
|
|
|
ind_indexes = [i] * (self.num_instances - 1)
|
|
|
|
elif len(select_indexes) >= self.num_instances:
|
|
|
|
ind_indexes = np.random.choice(select_indexes, size=self.num_instances - 1, replace=False)
|
|
|
|
else:
|
|
|
|
ind_indexes = np.random.choice(select_indexes, size=self.num_instances - 1, replace=True)
|
|
|
|
|
|
|
|
for kk in ind_indexes:
|
|
|
|
ret.append(index[kk])
|
|
|
|
yield from ret
|
|
|
|
|
|
|
|
def _infinite_indices(self):
|
2020-02-13 00:19:15 +08:00
|
|
|
np.random.seed(self._seed)
|
2020-02-10 07:38:56 +08:00
|
|
|
while True:
|
|
|
|
if self._shuffle:
|
2020-02-13 00:19:15 +08:00
|
|
|
identities = np.random.permutation(self.num_identities)
|
2020-02-10 07:38:56 +08:00
|
|
|
else:
|
2020-02-13 00:19:15 +08:00
|
|
|
identities = np.arange(self.num_identities)
|
2020-02-10 07:38:56 +08:00
|
|
|
drop_indices = self.num_identities % self.num_pids_per_batch
|
|
|
|
yield from identities[:-drop_indices]
|
|
|
|
|