fast-reid/projects/PartialReID/partialreid/dsr_head.py

154 lines
7.0 KiB
Python
Raw Normal View History

2020-05-21 23:58:35 +08:00
# encoding: utf-8
"""
@author: lingxiao he
@contact: helingxiao3@jd.com
"""
import torch
import torch.nn.functional as F
from torch import nn
from fastreid.layers import *
2020-05-21 23:58:35 +08:00
from fastreid.modeling.heads.build import REID_HEADS_REGISTRY
from fastreid.utils.weight_init import weights_init_classifier, weights_init_kaiming
class OcclusionUnit(nn.Module):
def __init__(self, in_planes=2048):
super(OcclusionUnit, self).__init__()
self.MaxPool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.MaxPool2 = nn.MaxPool2d(kernel_size=4, stride=2, padding=0)
self.MaxPool3 = nn.MaxPool2d(kernel_size=6, stride=2, padding=0)
self.MaxPool4 = nn.MaxPool2d(kernel_size=8, stride=2, padding=0)
self.mask_layer = nn.Linear(in_planes, 1, bias=False)
def forward(self, x):
SpaFeat1 = self.MaxPool1(x) # shape: [n, c, h, w]
SpaFeat2 = self.MaxPool2(x)
SpaFeat3 = self.MaxPool3(x)
SpaFeat4 = self.MaxPool4(x)
Feat1 = SpaFeat1.view(SpaFeat1.size(0), SpaFeat1.size(1), SpaFeat1.size(2) * SpaFeat1.size(3))
Feat2 = SpaFeat2.view(SpaFeat2.size(0), SpaFeat2.size(1), SpaFeat2.size(2) * SpaFeat2.size(3))
Feat3 = SpaFeat3.view(SpaFeat3.size(0), SpaFeat3.size(1), SpaFeat3.size(2) * SpaFeat3.size(3))
Feat4 = SpaFeat4.view(SpaFeat4.size(0), SpaFeat4.size(1), SpaFeat4.size(2) * SpaFeat4.size(3))
SpatialFeatAll = torch.cat((Feat1, Feat2, Feat3, Feat4), 2)
SpatialFeatAll = SpatialFeatAll.transpose(1, 2) # shape: [n, c, m]
y = self.mask_layer(SpatialFeatAll)
mask_weight = torch.sigmoid(y[:, :, 0])
2020-07-10 16:27:22 +08:00
2020-06-10 17:43:56 +08:00
feat_dim = SpaFeat1.size(2) * SpaFeat1.size(3)
mask_score = F.normalize(mask_weight[:, :feat_dim], p=1, dim=1)
2020-05-21 23:58:35 +08:00
mask_weight_norm = F.normalize(mask_weight, p=1, dim=1)
mask_score = mask_score.unsqueeze(1)
SpaFeat1 = SpaFeat1.transpose(1, 2)
SpaFeat1 = SpaFeat1.transpose(2, 3) # shape: [n, h, w, c]
SpaFeat1 = SpaFeat1.view((SpaFeat1.size(0), SpaFeat1.size(1) * SpaFeat1.size(2), -1)) # shape: [n, h*w, c]
2020-05-21 23:58:35 +08:00
global_feats = mask_score.matmul(SpaFeat1).view(SpaFeat1.shape[0], -1, 1, 1)
return global_feats, mask_weight, mask_weight_norm
@REID_HEADS_REGISTRY.register()
class DSRHead(nn.Module):
def __init__(self, cfg):
2020-05-21 23:58:35 +08:00
super().__init__()
# fmt: off
feat_dim = cfg.MODEL.BACKBONE.FEAT_DIM
num_classes = cfg.MODEL.HEADS.NUM_CLASSES
neck_feat = cfg.MODEL.HEADS.NECK_FEAT
pool_type = cfg.MODEL.HEADS.POOL_LAYER
cls_type = cfg.MODEL.HEADS.CLS_LAYER
norm_type = cfg.MODEL.HEADS.NORM
if pool_type == 'fastavgpool': self.pool_layer = FastGlobalAvgPool2d()
elif pool_type == 'avgpool': self.pool_layer = nn.AdaptiveAvgPool2d(1)
elif pool_type == 'maxpool': self.pool_layer = nn.AdaptiveMaxPool2d(1)
elif pool_type == 'gempoolP': self.pool_layer = GeneralizedMeanPoolingP()
elif pool_type == 'gempool': self.pool_layer = GeneralizedMeanPooling()
elif pool_type == "avgmaxpool": self.pool_layer = AdaptiveAvgMaxPool2d()
elif pool_type == 'clipavgpool': self.pool_layer = ClipGlobalAvgPool2d()
elif pool_type == "identity": self.pool_layer = nn.Identity()
elif pool_type == "flatten": self.pool_layer = Flatten()
else: raise KeyError(f"{pool_type} is not supported!")
# fmt: on
self.neck_feat = neck_feat
self.occ_unit = OcclusionUnit(in_planes=feat_dim)
2020-05-21 23:58:35 +08:00
self.MaxPool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.MaxPool2 = nn.MaxPool2d(kernel_size=4, stride=2, padding=0)
self.MaxPool3 = nn.MaxPool2d(kernel_size=6, stride=2, padding=0)
self.MaxPool4 = nn.MaxPool2d(kernel_size=8, stride=2, padding=0)
self.bnneck = get_norm(norm_type, feat_dim, bias_freeze=True)
2020-05-21 23:58:35 +08:00
self.bnneck.apply(weights_init_kaiming)
self.bnneck_occ = get_norm(norm_type, feat_dim, bias_freeze=True)
2020-05-21 23:58:35 +08:00
self.bnneck_occ.apply(weights_init_kaiming)
# identity classification layer
2020-07-17 19:14:20 +08:00
if cls_type == 'linear':
self.classifier = nn.Linear(feat_dim, num_classes, bias=False)
self.classifier_occ = nn.Linear(feat_dim, num_classes, bias=False)
2020-07-17 19:14:20 +08:00
elif cls_type == 'arcSoftmax':
self.classifier = ArcSoftmax(cfg, feat_dim, num_classes)
self.classifier_occ = ArcSoftmax(cfg, feat_dim, num_classes)
2020-07-17 19:14:20 +08:00
elif cls_type == 'circleSoftmax':
self.classifier = CircleSoftmax(cfg, feat_dim, num_classes)
self.classifier_occ = CircleSoftmax(cfg, feat_dim, num_classes)
2020-05-21 23:58:35 +08:00
else:
2020-07-17 19:14:20 +08:00
raise KeyError(f"{cls_type} is invalid, please choose from "
f"'linear', 'arcSoftmax' and 'circleSoftmax'.")
2020-07-15 15:08:53 +08:00
self.classifier.apply(weights_init_classifier)
self.classifier_occ.apply(weights_init_classifier)
2020-05-21 23:58:35 +08:00
def forward(self, features, targets=None):
"""
See :class:`ReIDHeads.forward`.
"""
SpaFeat1 = self.MaxPool1(features) # shape: [n, c, h, w]
SpaFeat2 = self.MaxPool2(features)
SpaFeat3 = self.MaxPool3(features)
SpaFeat4 = self.MaxPool4(features)
Feat1 = SpaFeat1.view(SpaFeat1.size(0), SpaFeat1.size(1), SpaFeat1.size(2) * SpaFeat1.size(3))
Feat2 = SpaFeat2.view(SpaFeat2.size(0), SpaFeat2.size(1), SpaFeat2.size(2) * SpaFeat2.size(3))
Feat3 = SpaFeat3.view(SpaFeat3.size(0), SpaFeat3.size(1), SpaFeat3.size(2) * SpaFeat3.size(3))
Feat4 = SpaFeat4.view(SpaFeat4.size(0), SpaFeat4.size(1), SpaFeat4.size(2) * SpaFeat4.size(3))
SpatialFeatAll = torch.cat((Feat1, Feat2, Feat3, Feat4), dim=2)
foreground_feat, mask_weight, mask_weight_norm = self.occ_unit(features)
bn_foreground_feat = self.bnneck_occ(foreground_feat)
bn_foreground_feat = bn_foreground_feat[..., 0, 0]
2020-05-21 23:58:35 +08:00
# Evaluation
if not self.training:
return bn_foreground_feat, SpatialFeatAll, mask_weight_norm
2020-07-10 16:27:22 +08:00
2020-05-21 23:58:35 +08:00
# Training
global_feat = self.pool_layer(features)
bn_feat = self.bnneck(global_feat)
bn_feat = bn_feat[..., 0, 0]
2020-05-21 23:58:35 +08:00
if self.classifier.__class__.__name__ == 'Linear':
2020-07-15 15:08:53 +08:00
cls_outputs = self.classifier(bn_feat)
fore_cls_outputs = self.classifier_occ(bn_foreground_feat)
pred_class_logits = F.linear(bn_feat, self.classifier.weight)
else:
2020-07-15 15:08:53 +08:00
cls_outputs = self.classifier(bn_feat, targets)
fore_cls_outputs = self.classifier_occ(bn_foreground_feat, targets)
pred_class_logits = self.classifier.s * F.linear(F.normalize(bn_feat),
F.normalize(self.classifier.weight))
return {
"cls_outputs": cls_outputs,
"fore_cls_outputs": fore_cls_outputs,
"pred_class_logits": pred_class_logits,
"global_features": global_feat[..., 0, 0],
"foreground_features": foreground_feat[..., 0, 0],
}