add saivt dataset

This commit is contained in:
liaoxingyu 2020-12-22 15:47:08 +08:00
parent e8739a667e
commit 04fe9fb2d8
4 changed files with 51 additions and 2 deletions

View File

@ -76,7 +76,7 @@ def build_reid_test_loader(cfg, dataset_name):
test_loader = DataLoader(
test_set,
batch_sampler=batch_sampler,
num_workers=2, # save some memory
num_workers=4, # save some memory
collate_fn=fast_batch_collator,
pin_memory=True,
)

View File

@ -33,7 +33,10 @@ class CommDataset(Dataset):
return len(self.img_items)
def __getitem__(self, index):
img_path, pid, camid = self.img_items[index]
img_item = self.img_items[index]
img_path = img_item[0]
pid = img_item[1]
camid = img_item[2]
img = read_image(img_path)
if self.transform is not None: img = self.transform(img)
if self.relabel:

View File

@ -0,0 +1,45 @@
# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import os
from glob import glob
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset
__all__ = ['SAIVT', ]
@DATASET_REGISTRY.register()
class SAIVT(ImageDataset):
dataset_dir = "SAIVT-SoftBio"
dataset_name = "saivt"
def __init__(self, root='datasets', **kwargs):
self.root = root
self.train_path = os.path.join(self.root, self.dataset_dir)
required_files = [self.train_path]
self.check_before_run(required_files)
train = self.process_train(self.train_path)
super().__init__(train, [], [], **kwargs)
def process_train(self, train_path):
data = []
pid_path = os.path.join(train_path, "cropped_images")
pid_list = os.listdir(pid_path)
for pid_name in pid_list:
pid = self.dataset_name + '_' + pid_name
img_list = glob(os.path.join(pid_path, pid_name, "*.jpeg"))
for img_path in img_list:
img_name = os.path.basename(img_path)
camid = self.dataset_name + '_' + img_name.split('-')[2]
data.append([img_path, pid, camid])
return data

View File

@ -52,6 +52,7 @@ def build_transforms(cfg, is_train=True):
if do_autoaug:
res.append(T.RandomApply([AutoAugment()], p=autoaug_prob))
res.append(T.Resize(size_train, interpolation=3))
if do_flip:
res.append(T.RandomHorizontalFlip(p=flip_prob))