mirror of https://github.com/JDAI-CV/fast-reid.git
Support gradient clip
Follow detectron2's instruction and add gradient clip in step function of optimizerpull/504/head
parent
2cabc3428a
commit
07b8251ccb
|
@ -42,9 +42,7 @@ SOLVER:
|
|||
OPT: Adam
|
||||
MAX_EPOCH: 60
|
||||
BASE_LR: 0.00035
|
||||
BIAS_LR_FACTOR: 1.
|
||||
WEIGHT_DECAY: 0.0005
|
||||
WEIGHT_DECAY_BIAS: 0.0005
|
||||
IMS_PER_BATCH: 64
|
||||
|
||||
SCHED: CosineAnnealingLR
|
||||
|
|
|
@ -56,9 +56,7 @@ SOLVER:
|
|||
OPT: Adam
|
||||
MAX_EPOCH: 120
|
||||
BASE_LR: 0.00035
|
||||
BIAS_LR_FACTOR: 2.
|
||||
WEIGHT_DECAY: 0.0005
|
||||
WEIGHT_DECAY_BIAS: 0.0005
|
||||
IMS_PER_BATCH: 64
|
||||
|
||||
SCHED: MultiStepLR
|
||||
|
|
|
@ -4,36 +4,293 @@
|
|||
@contact: sherlockliao01@gmail.com
|
||||
"""
|
||||
|
||||
import math
|
||||
# Based on: https://github.com/facebookresearch/detectron2/blob/master/detectron2/solver/build.py
|
||||
|
||||
import copy
|
||||
import itertools
|
||||
import math
|
||||
from enum import Enum
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Type, Union
|
||||
|
||||
import torch
|
||||
|
||||
from fastreid.config import CfgNode
|
||||
from . import lr_scheduler
|
||||
from . import optim
|
||||
|
||||
_GradientClipperInput = Union[torch.Tensor, Iterable[torch.Tensor]]
|
||||
_GradientClipper = Callable[[_GradientClipperInput], None]
|
||||
|
||||
|
||||
class GradientClipType(Enum):
|
||||
VALUE = "value"
|
||||
NORM = "norm"
|
||||
|
||||
|
||||
def _create_gradient_clipper(cfg: CfgNode) -> _GradientClipper:
|
||||
"""
|
||||
Creates gradient clipping closure to clip by value or by norm,
|
||||
according to the provided config.
|
||||
"""
|
||||
cfg = copy.deepcopy(cfg)
|
||||
|
||||
def clip_grad_norm(p: _GradientClipperInput):
|
||||
torch.nn.utils.clip_grad_norm_(p, cfg.CLIP_VALUE, cfg.NORM_TYPE)
|
||||
|
||||
def clip_grad_value(p: _GradientClipperInput):
|
||||
torch.nn.utils.clip_grad_value_(p, cfg.CLIP_VALUE)
|
||||
|
||||
_GRADIENT_CLIP_TYPE_TO_CLIPPER = {
|
||||
GradientClipType.VALUE: clip_grad_value,
|
||||
GradientClipType.NORM: clip_grad_norm,
|
||||
}
|
||||
return _GRADIENT_CLIP_TYPE_TO_CLIPPER[GradientClipType(cfg.CLIP_TYPE)]
|
||||
|
||||
|
||||
def _generate_optimizer_class_with_gradient_clipping(
|
||||
optimizer: Type[torch.optim.Optimizer],
|
||||
*,
|
||||
per_param_clipper: Optional[_GradientClipper] = None,
|
||||
global_clipper: Optional[_GradientClipper] = None,
|
||||
) -> Type[torch.optim.Optimizer]:
|
||||
"""
|
||||
Dynamically creates a new type that inherits the type of a given instance
|
||||
and overrides the `step` method to add gradient clipping
|
||||
"""
|
||||
assert (
|
||||
per_param_clipper is None or global_clipper is None
|
||||
), "Not allowed to use both per-parameter clipping and global clipping"
|
||||
|
||||
def optimizer_wgc_step(self, closure=None):
|
||||
if per_param_clipper is not None:
|
||||
for group in self.param_groups:
|
||||
for p in group["params"]:
|
||||
per_param_clipper(p)
|
||||
else:
|
||||
# global clipper for future use with detr
|
||||
# (https://github.com/facebookresearch/detr/pull/287)
|
||||
all_params = itertools.chain(*[g["params"] for g in self.param_groups])
|
||||
global_clipper(all_params)
|
||||
optimizer.step(self, closure)
|
||||
|
||||
OptimizerWithGradientClip = type(
|
||||
optimizer.__name__ + "WithGradientClip",
|
||||
(optimizer,),
|
||||
{"step": optimizer_wgc_step},
|
||||
)
|
||||
return OptimizerWithGradientClip
|
||||
|
||||
|
||||
def maybe_add_gradient_clipping(
|
||||
cfg: CfgNode, optimizer: Type[torch.optim.Optimizer]
|
||||
) -> Type[torch.optim.Optimizer]:
|
||||
"""
|
||||
If gradient clipping is enabled through config options, wraps the existing
|
||||
optimizer type to become a new dynamically created class OptimizerWithGradientClip
|
||||
that inherits the given optimizer and overrides the `step` method to
|
||||
include gradient clipping.
|
||||
Args:
|
||||
cfg: CfgNode, configuration options
|
||||
optimizer: type. A subclass of torch.optim.Optimizer
|
||||
Return:
|
||||
type: either the input `optimizer` (if gradient clipping is disabled), or
|
||||
a subclass of it with gradient clipping included in the `step` method.
|
||||
"""
|
||||
if not cfg.SOLVER.CLIP_GRADIENTS.ENABLED:
|
||||
return optimizer
|
||||
if isinstance(optimizer, torch.optim.Optimizer):
|
||||
optimizer_type = type(optimizer)
|
||||
else:
|
||||
assert issubclass(optimizer, torch.optim.Optimizer), optimizer
|
||||
optimizer_type = optimizer
|
||||
|
||||
grad_clipper = _create_gradient_clipper(cfg.SOLVER.CLIP_GRADIENTS)
|
||||
OptimizerWithGradientClip = _generate_optimizer_class_with_gradient_clipping(
|
||||
optimizer_type, per_param_clipper=grad_clipper
|
||||
)
|
||||
if isinstance(optimizer, torch.optim.Optimizer):
|
||||
optimizer.__class__ = OptimizerWithGradientClip # a bit hacky, not recommended
|
||||
return optimizer
|
||||
else:
|
||||
return OptimizerWithGradientClip
|
||||
|
||||
|
||||
def _generate_optimizer_class_with_freeze_layer(
|
||||
optimizer: Type[torch.optim.Optimizer],
|
||||
*,
|
||||
freeze_layers: Optional[List] = None,
|
||||
freeze_iters: int = 0,
|
||||
) -> Type[torch.optim.Optimizer]:
|
||||
assert (
|
||||
freeze_layers is not None and freeze_iters > 0
|
||||
), "No layers need to be frozen or freeze iterations is 0"
|
||||
|
||||
cnt = 0
|
||||
|
||||
def optimizer_wfl_step(self, closure=None):
|
||||
nonlocal cnt
|
||||
if cnt < freeze_iters:
|
||||
cnt += 1
|
||||
for group in self.param_groups:
|
||||
if group["name"].split('.')[0] in freeze_layers:
|
||||
for p in group["params"]:
|
||||
if p.grad is not None:
|
||||
p.grad = None
|
||||
|
||||
optimizer.step(self, closure)
|
||||
|
||||
OptimizerWithFreezeLayer = type(
|
||||
optimizer.__name__ + "WithFreezeLayer",
|
||||
(optimizer,),
|
||||
{"step": optimizer_wfl_step},
|
||||
)
|
||||
return OptimizerWithFreezeLayer
|
||||
|
||||
|
||||
def maybe_add_freeze_layer(
|
||||
cfg: CfgNode, optimizer: Type[torch.optim.Optimizer]
|
||||
) -> Type[torch.optim.Optimizer]:
|
||||
if cfg.MODEL.FREEZE_LAYERS == [''] or cfg.SOLVER.FREEZE_ITERS == 0:
|
||||
return optimizer
|
||||
|
||||
if isinstance(optimizer, torch.optim.Optimizer):
|
||||
optimizer_type = type(optimizer)
|
||||
else:
|
||||
assert issubclass(optimizer, torch.optim.Optimizer), optimizer
|
||||
optimizer_type = optimizer
|
||||
|
||||
OptimizerWithFreezeLayer = _generate_optimizer_class_with_freeze_layer(
|
||||
optimizer_type,
|
||||
freeze_layers=cfg.MODEL.FREEZE_LAYERS,
|
||||
freeze_iters=cfg.SOLVER.FREEZE_ITERS
|
||||
)
|
||||
if isinstance(optimizer, torch.optim.Optimizer):
|
||||
optimizer.__class__ = OptimizerWithFreezeLayer # a bit hacky, not recommended
|
||||
return optimizer
|
||||
else:
|
||||
return OptimizerWithFreezeLayer
|
||||
|
||||
|
||||
def build_optimizer(cfg, model):
|
||||
params = []
|
||||
for key, value in model.named_parameters():
|
||||
if not value.requires_grad: continue
|
||||
|
||||
lr = cfg.SOLVER.BASE_LR
|
||||
weight_decay = cfg.SOLVER.WEIGHT_DECAY
|
||||
if "heads" in key:
|
||||
lr *= cfg.SOLVER.HEADS_LR_FACTOR
|
||||
if "bias" in key:
|
||||
lr *= cfg.SOLVER.BIAS_LR_FACTOR
|
||||
weight_decay = cfg.SOLVER.WEIGHT_DECAY_BIAS
|
||||
params += [{"name": key, "params": [value], "lr": lr, "weight_decay": weight_decay}]
|
||||
params = get_default_optimizer_params(
|
||||
model,
|
||||
base_lr=cfg.SOLVER.BASE_LR,
|
||||
weight_decay_norm=cfg.SOLVER.WEIGHT_DECAY_NORM,
|
||||
bias_lr_factor=cfg.SOLVER.BIAS_LR_FACTOR,
|
||||
heads_lr_factor=cfg.SOLVER.HEADS_LR_FACTOR,
|
||||
weight_decay_bias=cfg.SOLVER.WEIGHT_DECAY_BIAS
|
||||
)
|
||||
|
||||
solver_opt = cfg.SOLVER.OPT
|
||||
if solver_opt == "SGD":
|
||||
opt_fns = getattr(optim, solver_opt)(
|
||||
return maybe_add_freeze_layer(
|
||||
cfg,
|
||||
maybe_add_gradient_clipping(cfg, torch.optim.SGD)
|
||||
)(
|
||||
params,
|
||||
lr=cfg.SOLVER.BASE_LR,
|
||||
momentum=cfg.SOLVER.MOMENTUM,
|
||||
nesterov=True if cfg.SOLVER.MOMENTUM and cfg.SOLVER.NESTEROV else False
|
||||
nesterov=cfg.SOLVER.NESTEROV,
|
||||
weight_decay=cfg.SOLVER.WEIGHT_DECAY,
|
||||
)
|
||||
else:
|
||||
opt_fns = getattr(optim, solver_opt)(params)
|
||||
return opt_fns
|
||||
return maybe_add_freeze_layer(
|
||||
cfg,
|
||||
maybe_add_gradient_clipping(cfg, getattr(torch.optim, solver_opt))
|
||||
)(
|
||||
params,
|
||||
lr=cfg.SOLVER.BASE_LR,
|
||||
weight_decay=cfg.SOLVER.WEIGHT_DECAY,
|
||||
)
|
||||
|
||||
|
||||
def get_default_optimizer_params(
|
||||
model: torch.nn.Module,
|
||||
base_lr: Optional[float] = None,
|
||||
weight_decay: Optional[float] = None,
|
||||
weight_decay_norm: Optional[float] = None,
|
||||
bias_lr_factor: Optional[float] = 1.0,
|
||||
heads_lr_factor: Optional[float] = 1.0,
|
||||
weight_decay_bias: Optional[float] = None,
|
||||
overrides: Optional[Dict[str, Dict[str, float]]] = None,
|
||||
):
|
||||
"""
|
||||
Get default param list for optimizer, with support for a few types of
|
||||
overrides. If no overrides needed, this is equivalent to `model.parameters()`.
|
||||
Args:
|
||||
base_lr: lr for every group by default. Can be omitted to use the one in optimizer.
|
||||
weight_decay: weight decay for every group by default. Can be omitted to use the one
|
||||
in optimizer.
|
||||
weight_decay_norm: override weight decay for params in normalization layers
|
||||
bias_lr_factor: multiplier of lr for bias parameters.
|
||||
heads_lr_factor: multiplier of lr for model.head parameters.
|
||||
weight_decay_bias: override weight decay for bias parameters
|
||||
overrides: if not `None`, provides values for optimizer hyperparameters
|
||||
(LR, weight decay) for module parameters with a given name; e.g.
|
||||
``{"embedding": {"lr": 0.01, "weight_decay": 0.1}}`` will set the LR and
|
||||
weight decay values for all module parameters named `embedding`.
|
||||
For common detection models, ``weight_decay_norm`` is the only option
|
||||
needed to be set. ``bias_lr_factor,weight_decay_bias`` are legacy settings
|
||||
from Detectron1 that are not found useful.
|
||||
Example:
|
||||
::
|
||||
torch.optim.SGD(get_default_optimizer_params(model, weight_decay_norm=0),
|
||||
lr=0.01, weight_decay=1e-4, momentum=0.9)
|
||||
"""
|
||||
if overrides is None:
|
||||
overrides = {}
|
||||
defaults = {}
|
||||
if base_lr is not None:
|
||||
defaults["lr"] = base_lr
|
||||
if weight_decay is not None:
|
||||
defaults["weight_decay"] = weight_decay
|
||||
bias_overrides = {}
|
||||
if bias_lr_factor is not None and bias_lr_factor != 1.0:
|
||||
# NOTE: unlike Detectron v1, we now by default make bias hyperparameters
|
||||
# exactly the same as regular weights.
|
||||
if base_lr is None:
|
||||
raise ValueError("bias_lr_factor requires base_lr")
|
||||
bias_overrides["lr"] = base_lr * bias_lr_factor
|
||||
if weight_decay_bias is not None:
|
||||
bias_overrides["weight_decay"] = weight_decay_bias
|
||||
if len(bias_overrides):
|
||||
if "bias" in overrides:
|
||||
raise ValueError("Conflicting overrides for 'bias'")
|
||||
overrides["bias"] = bias_overrides
|
||||
|
||||
norm_module_types = (
|
||||
torch.nn.BatchNorm1d,
|
||||
torch.nn.BatchNorm2d,
|
||||
torch.nn.BatchNorm3d,
|
||||
torch.nn.SyncBatchNorm,
|
||||
# NaiveSyncBatchNorm inherits from BatchNorm2d
|
||||
torch.nn.GroupNorm,
|
||||
torch.nn.InstanceNorm1d,
|
||||
torch.nn.InstanceNorm2d,
|
||||
torch.nn.InstanceNorm3d,
|
||||
torch.nn.LayerNorm,
|
||||
torch.nn.LocalResponseNorm,
|
||||
)
|
||||
params: List[Dict[str, Any]] = []
|
||||
memo: Set[torch.nn.parameter.Parameter] = set()
|
||||
|
||||
for module_name, module in model.named_modules():
|
||||
for module_param_name, value in module.named_parameters(recurse=False):
|
||||
if not value.requires_grad:
|
||||
continue
|
||||
# Avoid duplicating parameters
|
||||
if value in memo:
|
||||
continue
|
||||
memo.add(value)
|
||||
|
||||
hyperparams = copy.copy(defaults)
|
||||
if isinstance(module, norm_module_types) and weight_decay_norm is not None:
|
||||
hyperparams["weight_decay"] = weight_decay_norm
|
||||
hyperparams.update(overrides.get(module_param_name, {}))
|
||||
if module_name.split('.')[0] == "heads" and (heads_lr_factor is not None and heads_lr_factor != 1.0):
|
||||
hyperparams["lr"] = hyperparams.get("lr", base_lr) * heads_lr_factor
|
||||
params.append({"name": module_name + '.' + module_param_name,
|
||||
"params": [value], **hyperparams})
|
||||
return params
|
||||
|
||||
|
||||
def build_lr_scheduler(cfg, optimizer, iters_per_epoch):
|
||||
|
|
Loading…
Reference in New Issue