feat: add MGN model

support MGN architecture and training config
pull/59/head
liaoxingyu 2020-05-15 11:39:54 +08:00
parent 3041a52aef
commit 18a33f7962
18 changed files with 470 additions and 9 deletions

View File

@ -65,7 +65,7 @@ SOLVER:
TEST:
EVAL_PERIOD: 2000
IMS_PER_BATCH: 512
IMS_PER_BATCH: 256
CUDNN_BENCHMARK: True

View File

@ -0,0 +1,88 @@
MODEL:
META_ARCHITECTURE: 'MGN'
OPEN_LAYERS: ["b1_pool", "b1_head", "b2_pool", "b2_head", "b21_pool", "b21_head", "b22_pool", "b22_head",
"b3_pool", "b3_head", "b31_pool", "b31_head", "b32_pool", "b32_head", "b33_pool", "b33_head"]
BACKBONE:
NAME: "build_resnet_backbone"
NORM: "BN"
DEPTH: 50
LAST_STRIDE: 1
WITH_IBN: False
WITH_NL: False
PRETRAIN: True
HEADS:
NAME: "BNneckHead"
NORM: "BN"
NECK_FEAT: "after"
CLS_LAYER: "circle"
POOL_LAYER: "gempool"
IN_FEAT: 256
SCALE: 64
MARGIN: 0.35
LOSSES:
NAME: ("CrossEntropyLoss", "TripletLoss",)
CE:
EPSILON: 0.1
SCALE: 0.125
TRI:
MARGIN: 0.0
HARD_MINING: True
NORM_FEAT: False
USE_COSINE_DIST: False
SCALE: 0.20
DATASETS:
NAMES: ("DukeMTMC",)
TESTS: ("DukeMTMC",)
INPUT:
SIZE_TRAIN: [384, 128]
SIZE_TEST: [384, 128]
DO_AUTOAUG: True
REA:
ENABLED: True
PROB: 0.5
MEAN: [123.675, 116.28, 103.53]
DO_PAD: True
DATALOADER:
PK_SAMPLER: True
NUM_INSTANCE: 16
NUM_WORKERS: 16
SOLVER:
OPT: "Adam"
MAX_ITER: 18000
BASE_LR: 0.00035
BIAS_LR_FACTOR: 2.
WEIGHT_DECAY: 0.0005
WEIGHT_DECAY_BIAS: 0.0
IMS_PER_BATCH: 64
SCHED: "DelayedCosineAnnealingLR"
DELAY_ITERS: 9000
ETA_MIN_LR: 0.00000077
WARMUP_FACTOR: 0.01
WARMUP_ITERS: 2000
FREEZE_ITERS: 2000
LOG_PERIOD: 200
CHECKPOINT_PERIOD: 6000
TEST:
EVAL_PERIOD: 2000
IMS_PER_BATCH: 256
PRECISE_BN:
ENABLED: False
DATASET: 'DukeMTMC'
CUDNN_BENCHMARK: True

View File

@ -69,7 +69,7 @@ SOLVER:
TEST:
EVAL_PERIOD: 2000
IMS_PER_BATCH: 512
IMS_PER_BATCH: 256
CUDNN_BENCHMARK: True

View File

@ -0,0 +1,17 @@
_BASE_: "../Base-AGW.yml"
MODEL:
BACKBONE:
NAME: "build_resnet_backbone"
DEPTH: 101
WITH_IBN: True
PRETRAIN_PATH: "/home/liaoxingyu2/lxy/.cache/torch/checkpoints/resnet101_ibn_a.pth.tar"
HEADS:
NUM_CLASSES: 702
DATASETS:
NAMES: ("DukeMTMC",)
TESTS: ("DukeMTMC",)
OUTPUT_DIR: "logs/dukemtmc/agw_R101-ibn"

View File

@ -5,9 +5,12 @@ MODEL:
NAME: "build_resnest_backbone"
HEADS:
NECK_FEAT: "after"
NUM_CLASSES: 702
LOSSES:
TRI:
MARGIN: 0.3
DATASETS:
NAMES: ("DukeMTMC",)
TESTS: ("DukeMTMC",)

View File

@ -4,7 +4,7 @@ MODEL:
BACKBONE:
DEPTH: 101
WITH_IBN: True
PRETRAIN_PATH: "/home/liaoxingyu2/lxy/.cache/torch/checkpoints/resnet101_ibn_a.pth.tar"
PRETRAIN_PATH: "/export/home/lxy/.cache/torch/checkpoints/resnet101_ibn_a.pth.tar"
HEADS:
NUM_CLASSES: 702

View File

@ -0,0 +1,14 @@
_BASE_: "../Base-MGN.yml"
MODEL:
BACKBONE:
PRETRAIN_PATH: "/home/liaoxingyu2/lxy/.cache/torch/checkpoints/resnet50_ibn_a.pth.tar"
HEADS:
NUM_CLASSES: 702
DATASETS:
NAMES: ("DukeMTMC",)
TESTS: ("DukeMTMC",)
OUTPUT_DIR: "logs/dukemtmc/mgn_R50-ibn"

View File

@ -3,7 +3,6 @@ _BASE_: "../Base-Strongerbaseline.yml"
MODEL:
BACKBONE:
DEPTH: 101
WITH_NL: False
WITH_IBN: True
PRETRAIN_PATH: "/export/home/lxy/.cache/torch/checkpoints/resnet101_ibn_a.pth.tar"

View File

@ -0,0 +1,26 @@
_BASE_: "../Base-AGW.yml"
MODEL:
BACKBONE:
DEPTH: 101
WITH_IBN: True
PRETRAIN_PATH: "/home/liaoxingyu2/lxy/.cache/torch/checkpoints/resnet101_ibn_a.pth.tar"
HEADS:
NUM_CLASSES: 1041
DATASETS:
NAMES: ("MSMT17",)
TESTS: ("MSMT17",)
SOLVER:
MAX_ITER: 42000
STEPS: [19000, 33000]
WARMUP_ITERS: 4700
CHECKPOINT_PERIOD: 5000
TEST:
EVAL_PERIOD: 5000
OUTPUT_DIR: "logs/msmt17/agw_R101-ibn"

View File

@ -7,6 +7,10 @@ MODEL:
HEADS:
NUM_CLASSES: 1041
LOSSES:
TRI:
MARGIN: 0.3
DATASETS:
NAMES: ("MSMT17",)
TESTS: ("MSMT17",)

View File

@ -0,0 +1,26 @@
_BASE_: "../Base-MGN.yml"
MODEL:
BACKBONE:
WITH_IBN: True
PRETRAIN_PATH: "/home/liaoxingyu2/lxy/.cache/torch/checkpoints/resnet50_ibn_a.pth.tar"
HEADS:
NUM_CLASSES: 1041
DATASETS:
NAMES: ("MSMT17",)
TESTS: ("MSMT17",)
SOLVER:
MAX_ITER: 28000
DELAY_ITERS: 14000
WARMUP_ITERS: 4700
FREEZE_ITERS: 4700
TEST:
EVAL_PERIOD: 5000
PRECISE_BN:
DATASET: 'MSMT17'
OUTPUT_DIR: "logs/msmt17/mgn_R50-ibn"

View File

@ -0,0 +1,22 @@
_BASE_: "../Base-MGN.yml"
MODEL:
HEADS:
NUM_CLASSES: 1041
DATASETS:
NAMES: ("MSMT17",)
TESTS: ("MSMT17",)
SOLVER:
MAX_ITER: 28000
DELAY_ITERS: 14000
WARMUP_ITERS: 4700
FREEZE_ITERS: 4700
TEST:
EVAL_PERIOD: 5000
PRECISE_BN:
DATASET: 'MSMT17'
OUTPUT_DIR: "logs/msmt17/mgn_R50"

View File

@ -3,7 +3,6 @@ _BASE_: "../Base-Strongerbaseline.yml"
MODEL:
BACKBONE:
DEPTH: 101
WITH_NL: False
WITH_IBN: True
PRETRAIN_PATH: "/export/home/lxy/.cache/torch/checkpoints/resnet101_ibn_a.pth.tar"

View File

@ -0,0 +1,17 @@
_BASE_: "../Base-AGW.yml"
MODEL:
BACKBONE:
NAME: "build_resnet_backbone"
DEPTH: 101
WITH_IBN: True
PRETRAIN_PATH: "/export/home/lxy/.cache/torch/checkpoints/resnet101_ibn_a.pth.tar"
HEADS:
NUM_CLASSES: 751
DATASETS:
NAMES: ("Market1501",)
TESTS: ("Market1501",)
OUTPUT_DIR: "logs/market1501/agw_R101-ibn"

View File

@ -5,9 +5,13 @@ MODEL:
NAME: "build_resnest_backbone"
HEADS:
NECK_FEAT: "after"
NECK_FEAT: "before"
NUM_CLASSES: 751
LOSSES:
TRI:
MARGIN: 0.3
DATASETS:
NAMES: ("Market1501",)
TESTS: ("Market1501",)

View File

@ -0,0 +1,14 @@
_BASE_: "../Base-MGN.yml"
MODEL:
BACKBONE:
PRETRAIN_PATH: "/home/liaoxingyu2/lxy/.cache/torch/checkpoints/resnet50_ibn_a.pth.tar"
HEADS:
NUM_CLASSES: 751
DATASETS:
NAMES: ("Market1501",)
TESTS: ("Market1501",)
OUTPUT_DIR: "logs/market/mgn_R50-ibn"

View File

@ -3,9 +3,8 @@ _BASE_: "../Base-Strongerbaseline.yml"
MODEL:
BACKBONE:
DEPTH: 101
WITH_NL: False
WITH_IBN: True
PRETRAIN_PATH: "/export/home/lxy/.cache/torch/checkpoints/resnet101_ibn_a.pth.tar"
PRETRAIN_PATH: "/home/liaoxingyu2/lxy/.cache/torch/checkpoints/resnet101_ibn_a.pth.tar"
HEADS:
NUM_CLASSES: 751

View File

@ -0,0 +1,229 @@
# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
import copy
import torch
from torch import nn
from fastreid.layers import GeneralizedMeanPoolingP, get_norm
from fastreid.modeling.backbones import build_backbone
from fastreid.modeling.backbones.resnet import Bottleneck
from fastreid.modeling.heads import build_reid_heads
from fastreid.modeling.losses import reid_losses, CrossEntropyLoss
from fastreid.utils.weight_init import weights_init_kaiming
from .build import META_ARCH_REGISTRY
@META_ARCH_REGISTRY.register()
class MGN(nn.Module):
def __init__(self, cfg):
super().__init__()
self._cfg = cfg
# backbone
bn_norm = cfg.MODEL.BACKBONE.NORM
num_splits = cfg.MODEL.BACKBONE.NORM_SPLIT
with_se = cfg.MODEL.BACKBONE.WITH_SE
backbone = build_backbone(cfg)
self.backbone = nn.Sequential(
backbone.conv1,
backbone.bn1,
backbone.relu,
backbone.maxpool,
backbone.layer1,
backbone.layer2,
backbone.layer3[0]
)
res_conv4 = nn.Sequential(*backbone.layer3[1:])
res_g_conv5 = backbone.layer4
res_p_conv5 = nn.Sequential(
Bottleneck(1024, 512, bn_norm, num_splits, False, with_se, downsample=nn.Sequential(
nn.Conv2d(1024, 2048, 1, bias=False), get_norm(bn_norm, 2048, num_splits))),
Bottleneck(2048, 512, bn_norm, num_splits, False, with_se),
Bottleneck(2048, 512, bn_norm, num_splits, False, with_se))
res_p_conv5.load_state_dict(backbone.layer4.state_dict())
if cfg.MODEL.HEADS.POOL_LAYER == 'avgpool':
pool_layer = nn.AdaptiveAvgPool2d(1)
elif cfg.MODEL.HEADS.POOL_LAYER == 'maxpool':
pool_layer = nn.AdaptiveMaxPool2d(1)
elif cfg.MODEL.HEADS.POOL_LAYER == 'gempool':
pool_layer = GeneralizedMeanPoolingP()
else:
pool_layer = nn.Identity()
# head
in_feat = cfg.MODEL.HEADS.IN_FEAT
num_classes = cfg.MODEL.HEADS.NUM_CLASSES
# branch1
self.b1 = nn.Sequential(
copy.deepcopy(res_conv4), copy.deepcopy(res_g_conv5)
)
self.b1_pool = self._build_pool_reduce(pool_layer, reduce_dim=in_feat)
self.b1_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity())
# branch2
self.b2 = nn.Sequential(
copy.deepcopy(res_conv4), copy.deepcopy(res_p_conv5)
)
self.b2_pool = self._build_pool_reduce(pool_layer, reduce_dim=in_feat)
self.b2_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity())
self.b21_pool = self._build_pool_reduce(pool_layer, reduce_dim=in_feat)
self.b21_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity())
self.b22_pool = self._build_pool_reduce(pool_layer, reduce_dim=in_feat)
self.b22_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity())
# branch3
self.b3 = nn.Sequential(
copy.deepcopy(res_conv4), copy.deepcopy(res_p_conv5)
)
self.b3_pool = self._build_pool_reduce(pool_layer, reduce_dim=in_feat)
self.b3_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity())
self.b31_pool = self._build_pool_reduce(pool_layer, reduce_dim=in_feat)
self.b31_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity())
self.b32_pool = self._build_pool_reduce(pool_layer, reduce_dim=in_feat)
self.b32_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity())
self.b33_pool = self._build_pool_reduce(pool_layer, reduce_dim=in_feat)
self.b33_head = build_reid_heads(cfg, in_feat, num_classes, nn.Identity())
@staticmethod
def _build_pool_reduce(pool_layer, input_dim=2048, reduce_dim=256):
pool_reduce = nn.Sequential(
pool_layer,
nn.Conv2d(input_dim, reduce_dim, 1, bias=False),
nn.BatchNorm2d(reduce_dim),
nn.ReLU(True),
)
pool_reduce.apply(weights_init_kaiming)
return pool_reduce
def forward(self, inputs):
images = inputs["images"]
if not self.training:
pred_feat = self.inference(images)
try:
return pred_feat, inputs["targets"], inputs["camid"]
except KeyError:
return pred_feat
targets = inputs["targets"]
# Training
features = self.backbone(images) # (bs, 2048, 16, 8)
# branch1
b1_feat = self.b1(features)
b1_pool_feat = self.b1_pool(b1_feat)
b1_logits, b1_pool_feat, _ = self.b1_head(b1_pool_feat, targets)
# branch2
b2_feat = self.b2(features)
# global
b2_pool_feat = self.b2_pool(b2_feat)
b2_logits, b2_pool_feat, _ = self.b2_head(b2_pool_feat, targets)
b21_feat, b22_feat = torch.chunk(b2_feat, 2, dim=2)
# part1
b21_pool_feat = self.b21_pool(b21_feat)
b21_logits, b21_pool_feat, _ = self.b21_head(b21_pool_feat, targets)
# part2
b22_pool_feat = self.b22_pool(b22_feat)
b22_logits, b22_pool_feat, _ = self.b22_head(b22_pool_feat, targets)
# branch3
b3_feat = self.b3(features)
# global
b3_pool_feat = self.b3_pool(b3_feat)
b3_logits, b3_pool_feat, _ = self.b3_head(b3_pool_feat, targets)
b31_feat, b32_feat, b33_feat = torch.chunk(b3_feat, 3, dim=2)
# part1
b31_pool_feat = self.b31_pool(b31_feat)
b31_logits, b31_pool_feat, _ = self.b31_head(b31_pool_feat, targets)
# part2
b32_pool_feat = self.b32_pool(b32_feat)
b32_logits, b32_pool_feat, _ = self.b32_head(b32_pool_feat, targets)
# part3
b33_pool_feat = self.b33_pool(b33_feat)
b33_logits, b33_pool_feat, _ = self.b33_head(b33_pool_feat, targets)
return (b1_logits, b2_logits, b3_logits, b21_logits, b22_logits, b31_logits, b32_logits, b33_logits), \
(b1_pool_feat, b2_pool_feat, b3_pool_feat,
torch.cat((b21_pool_feat, b22_pool_feat), dim=1),
torch.cat((b31_pool_feat, b32_pool_feat, b33_pool_feat), dim=1)), \
targets
def inference(self, images):
assert not self.training
features = self.backbone(images) # (bs, 2048, 16, 8)
# branch1
b1_feat = self.b1(features)
b1_pool_feat = self.b1_pool(b1_feat)
b1_pool_feat = self.b1_head(b1_pool_feat)
# branch2
b2_feat = self.b2(features)
# global
b2_pool_feat = self.b2_pool(b2_feat)
b2_pool_feat = self.b2_head(b2_pool_feat)
b21_feat, b22_feat = torch.chunk(b2_feat, 2, dim=2)
# part1
b21_pool_feat = self.b21_pool(b21_feat)
b21_pool_feat = self.b21_head(b21_pool_feat)
# part2
b22_pool_feat = self.b22_pool(b22_feat)
b22_pool_feat = self.b22_head(b22_pool_feat)
# branch3
b3_feat = self.b3(features)
# global
b3_pool_feat = self.b3_pool(b3_feat)
b3_pool_feat = self.b3_head(b3_pool_feat)
b31_feat, b32_feat, b33_feat = torch.chunk(b3_feat, 3, dim=2)
# part1
b31_pool_feat = self.b31_pool(b31_feat)
b31_pool_feat = self.b31_head(b31_pool_feat)
# part2
b32_pool_feat = self.b32_pool(b32_feat)
b32_pool_feat = self.b32_head(b32_pool_feat)
# part3
b33_pool_feat = self.b33_pool(b33_feat)
b33_pool_feat = self.b33_head(b33_pool_feat)
pred_feat = torch.cat([b1_pool_feat, b2_pool_feat, b3_pool_feat, b21_pool_feat,
b22_pool_feat, b31_pool_feat, b32_pool_feat, b33_pool_feat], dim=1)
return pred_feat
def losses(self, outputs):
logits, feats, targets = outputs
loss_dict = {}
loss_dict.update(reid_losses(self._cfg, logits[0], feats[0], targets, 'b1_'))
loss_dict.update(reid_losses(self._cfg, logits[1], feats[1], targets, 'b2_'))
loss_dict.update(reid_losses(self._cfg, logits[2], feats[2], targets, 'b3_'))
loss_dict.update(reid_losses(self._cfg, logits[3], feats[3], targets, 'b21_'))
loss_dict.update(reid_losses(self._cfg, logits[5], feats[4], targets, 'b31_'))
part_ce_loss = [
(CrossEntropyLoss(self._cfg)(logits[4], None, targets), 'b22_'),
(CrossEntropyLoss(self._cfg)(logits[6], None, targets), 'b32_'),
(CrossEntropyLoss(self._cfg)(logits[7], None, targets), 'b33_')
]
named_ce_loss = {}
for item in part_ce_loss:
named_ce_loss[item[1] + [*item[0]][0]] = [*item[0].values()][0]
loss_dict.update(named_ce_loss)
return loss_dict