change way of layer freezing

Remove `find_unused_parameters` in DDP and add a new step function in optimizer for freezing backbone. It will accelerate training speed in this way.
pull/504/head
liaoxingyu 2021-05-25 15:57:09 +08:00
parent dbf1604231
commit 2b65882447
2 changed files with 23 additions and 21 deletions

View File

@ -213,7 +213,6 @@ class DefaultTrainer(TrainerBase):
# for part of the parameters is not updated.
model = DistributedDataParallel(
model, device_ids=[comm.get_local_rank()], broadcast_buffers=False,
find_unused_parameters=True
)
self._trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)(
@ -305,9 +304,9 @@ class DefaultTrainer(TrainerBase):
ret.append(hooks.LayerFreeze(
self.model,
self.optimizer,
cfg.MODEL.FREEZE_LAYERS,
cfg.SOLVER.FREEZE_ITERS,
cfg.SOLVER.FREEZE_FC_ITERS,
))
# Do PreciseBN before checkpointer, because it updates the model and need to

View File

@ -449,19 +449,18 @@ class PreciseBN(HookBase):
class LayerFreeze(HookBase):
def __init__(self, model, freeze_layers, freeze_iters, fc_freeze_iters):
def __init__(self, model, optimizer, freeze_layers, freeze_iters):
self._logger = logging.getLogger(__name__)
if isinstance(model, DistributedDataParallel):
model = model.module
self.model = model
self.optimizer = optimizer
self.freeze_layers = freeze_layers
self.freeze_iters = freeze_iters
self.fc_freeze_iters = fc_freeze_iters
self.is_frozen = False
self.fc_frozen = False
def before_step(self):
# Freeze specific layers
@ -472,18 +471,6 @@ class LayerFreeze(HookBase):
if self.trainer.iter >= self.freeze_iters and self.is_frozen:
self.open_all_layer()
if self.trainer.max_iter - self.trainer.iter <= self.fc_freeze_iters \
and not self.fc_frozen:
self.freeze_classifier()
def freeze_classifier(self):
for p in self.model.heads.classifier.parameters():
p.requires_grad_(False)
self.fc_frozen = True
self._logger.info("Freeze classifier training for "
"last {} iterations".format(self.fc_freeze_iters))
def freeze_specific_layer(self):
for layer in self.freeze_layers:
if not hasattr(self.model, layer):
@ -493,8 +480,24 @@ class LayerFreeze(HookBase):
if name in self.freeze_layers:
# Change BN in freeze layers to eval mode
module.eval()
for p in module.parameters():
p.requires_grad_(False)
def zero_freeze_grad():
for group in self.optimizer.param_groups:
if group["name"].split('.')[0] in self.freeze_layers:
for p in group["params"]:
if p.grad is not None:
p.grad = None
origin_step = self.optimizer.step
self.origin_step = origin_step
@torch.no_grad()
def step(closure=None):
zero_freeze_grad()
loss = origin_step(closure)
return loss
self.optimizer.step = step
self.is_frozen = True
freeze_layers = ", ".join(self.freeze_layers)
@ -504,8 +507,8 @@ class LayerFreeze(HookBase):
for name, module in self.model.named_children():
if name in self.freeze_layers:
module.train()
for p in module.parameters():
p.requires_grad_(True)
self.optimizer.step = self.origin_step
self.is_frozen = False