mirror of https://github.com/JDAI-CV/fast-reid.git
feat: support re-rank in test phase
parent
e502fadba9
commit
320010f2ae
|
@ -222,7 +222,18 @@ _C.TEST = CN()
|
|||
_C.TEST.EVAL_PERIOD = 50
|
||||
_C.TEST.IMS_PER_BATCH = 128
|
||||
|
||||
# Precise BN
|
||||
# Re-rank
|
||||
_C.TEST.RERANK = CN()
|
||||
_C.TEST.RERANK.ENABLED = False
|
||||
_C.TEST.RERANK.K1 = 20
|
||||
_C.TEST.RERANK.K2 = 6
|
||||
_C.TEST.RERANK.LAMBDA = 0.3
|
||||
|
||||
# Average query expansion
|
||||
_C.TEST.AQE = CN()
|
||||
_C.TEST.AQE.ENABLED = True
|
||||
|
||||
# Precise batchnorm
|
||||
_C.TEST.PRECISE_BN = CN()
|
||||
_C.TEST.PRECISE_BN.ENABLED = False
|
||||
_C.TEST.PRECISE_BN.DATASET = 'Market1501'
|
||||
|
|
|
@ -3,6 +3,7 @@
|
|||
@author: liaoxingyu
|
||||
@contact: sherlockliao01@gmail.com
|
||||
"""
|
||||
import logging
|
||||
import copy
|
||||
from collections import OrderedDict
|
||||
|
||||
|
@ -12,10 +13,14 @@ import torch.nn.functional as F
|
|||
|
||||
from .evaluator import DatasetEvaluator
|
||||
from .rank import evaluate_rank
|
||||
from .rerank import re_ranking
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ReidEvaluator(DatasetEvaluator):
|
||||
def __init__(self, cfg, num_query, output_dir=None):
|
||||
self.cfg = cfg
|
||||
self._num_query = num_query
|
||||
self._output_dir = output_dir
|
||||
|
||||
|
@ -29,14 +34,19 @@ class ReidEvaluator(DatasetEvaluator):
|
|||
self.camids = []
|
||||
|
||||
def process(self, outputs):
|
||||
self.features.append(outputs[0].cpu())
|
||||
self.features.append(outputs[0])
|
||||
self.pids.extend(outputs[1].cpu().numpy())
|
||||
self.camids.extend(outputs[2].cpu().numpy())
|
||||
|
||||
@staticmethod
|
||||
def cal_dist(query_feat: torch.tensor, gallery_feat: torch.tensor):
|
||||
query_feat = F.normalize(query_feat, dim=1)
|
||||
gallery_feat = F.normalize(gallery_feat, dim=1)
|
||||
cos_dist = 1 - torch.mm(query_feat, gallery_feat.t()).cpu().numpy()
|
||||
return cos_dist
|
||||
|
||||
def evaluate(self):
|
||||
features = torch.cat(self.features, dim=0)
|
||||
# normalize feature
|
||||
features = F.normalize(features, dim=1)
|
||||
|
||||
# query feature, person ids and camera ids
|
||||
query_features = features[:self._num_query]
|
||||
|
@ -50,8 +60,21 @@ class ReidEvaluator(DatasetEvaluator):
|
|||
|
||||
self._results = OrderedDict()
|
||||
|
||||
cos_dist = torch.mm(query_features, gallery_features.t()).numpy()
|
||||
cmc, all_AP, all_INP = evaluate_rank(1 - cos_dist, query_pids, gallery_pids, query_camids, gallery_camids)
|
||||
dist = self.cal_dist(query_features, gallery_features)
|
||||
|
||||
if self.cfg.TEST.RERANK.ENABLED:
|
||||
logger.info("Test with rerank setting")
|
||||
k1 = self.cfg.TEST.RERANK.K1
|
||||
k2 = self.cfg.TEST.RERANK.K1
|
||||
lambda_value = self.cfg.TEST.RERANK.LAMBDA
|
||||
q_q_dist = self.cal_dist(query_features, query_features)
|
||||
g_g_dist = self.cal_dist(gallery_features, gallery_features)
|
||||
dist = re_ranking(dist, q_q_dist, g_g_dist, k1, k2, lambda_value)
|
||||
|
||||
if self.cfg.TEST.AQE.ENABLED:
|
||||
pass
|
||||
|
||||
cmc, all_AP, all_INP = evaluate_rank(dist, query_pids, gallery_pids, query_camids, gallery_camids)
|
||||
mAP = np.mean(all_AP)
|
||||
mINP = np.mean(all_INP)
|
||||
for r in [1, 5, 10]:
|
||||
|
|
|
@ -0,0 +1,73 @@
|
|||
# encoding: utf-8
|
||||
|
||||
# based on:
|
||||
# https://github.com/zhunzhong07/person-re-ranking
|
||||
|
||||
__all__ = ['re_ranking']
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def re_ranking(q_g_dist, q_q_dist, g_g_dist, k1: int = 20, k2: int = 6, lambda_value: float = 0.3):
|
||||
original_dist = np.concatenate(
|
||||
[np.concatenate([q_q_dist, q_g_dist], axis=1),
|
||||
np.concatenate([q_g_dist.T, g_g_dist], axis=1)],
|
||||
axis=0)
|
||||
original_dist = np.power(original_dist, 2).astype(np.float32)
|
||||
original_dist = np.transpose(1. * original_dist / np.max(original_dist, axis=0))
|
||||
V = np.zeros_like(original_dist).astype(np.float32)
|
||||
initial_rank = np.argsort(original_dist).astype(np.int32)
|
||||
|
||||
query_num = q_g_dist.shape[0]
|
||||
gallery_num = q_g_dist.shape[0] + q_g_dist.shape[1]
|
||||
all_num = gallery_num
|
||||
|
||||
for i in range(all_num):
|
||||
# k-reciprocal neighbors
|
||||
forward_k_neigh_index = initial_rank[i, :k1 + 1]
|
||||
backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1]
|
||||
fi = np.where(backward_k_neigh_index == i)[0]
|
||||
k_reciprocal_index = forward_k_neigh_index[fi]
|
||||
k_reciprocal_expansion_index = k_reciprocal_index
|
||||
for j in range(len(k_reciprocal_index)):
|
||||
candidate = k_reciprocal_index[j]
|
||||
candidate_forward_k_neigh_index = initial_rank[candidate,
|
||||
:int(np.around(k1 / 2.)) + 1]
|
||||
candidate_backward_k_neigh_index = initial_rank[candidate_forward_k_neigh_index,
|
||||
:int(np.around(k1 / 2.)) + 1]
|
||||
fi_candidate = np.where(candidate_backward_k_neigh_index == candidate)[0]
|
||||
candidate_k_reciprocal_index = candidate_forward_k_neigh_index[fi_candidate]
|
||||
if len(np.intersect1d(candidate_k_reciprocal_index, k_reciprocal_index)) > 2. / 3 * len(
|
||||
candidate_k_reciprocal_index):
|
||||
k_reciprocal_expansion_index = np.append(k_reciprocal_expansion_index, candidate_k_reciprocal_index)
|
||||
|
||||
k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index)
|
||||
weight = np.exp(-original_dist[i, k_reciprocal_expansion_index])
|
||||
V[i, k_reciprocal_expansion_index] = 1. * weight / np.sum(weight)
|
||||
original_dist = original_dist[:query_num, ]
|
||||
if k2 != 1:
|
||||
V_qe = np.zeros_like(V, dtype=np.float32)
|
||||
for i in range(all_num):
|
||||
V_qe[i, :] = np.mean(V[initial_rank[i, :k2], :], axis=0)
|
||||
V = V_qe
|
||||
del V_qe
|
||||
del initial_rank
|
||||
invIndex = []
|
||||
for i in range(gallery_num):
|
||||
invIndex.append(np.where(V[:, i] != 0)[0])
|
||||
|
||||
jaccard_dist = np.zeros_like(original_dist, dtype=np.float32)
|
||||
|
||||
for i in range(query_num):
|
||||
temp_min = np.zeros(shape=[1, gallery_num], dtype=np.float32)
|
||||
indNonZero = np.where(V[i, :] != 0)[0]
|
||||
indImages = [invIndex[ind] for ind in indNonZero]
|
||||
for j in range(len(indNonZero)):
|
||||
temp_min[0, indImages[j]] = temp_min[0, indImages[j]] + np.minimum(V[i, indNonZero[j]],
|
||||
V[indImages[j], indNonZero[j]])
|
||||
jaccard_dist[i] = 1 - temp_min / (2. - temp_min)
|
||||
|
||||
final_dist = jaccard_dist * (1 - lambda_value) + original_dist * lambda_value
|
||||
del original_dist, V, jaccard_dist
|
||||
final_dist = final_dist[:query_num, query_num:]
|
||||
return final_dist
|
|
@ -1,94 +0,0 @@
|
|||
# encoding: utf-8
|
||||
"""
|
||||
Source: https://github.com/zhunzhong07/person-re-ranking
|
||||
Created on Mon Jun 26 14:46:56 2017
|
||||
@author: luohao
|
||||
Modified by Houjing Huang, 2017-12-22.
|
||||
- This version accepts distance matrix instead of raw features.
|
||||
- The difference of `/` division between python 2 and 3 is handled.
|
||||
- numpy.float16 is replaced by numpy.float32 for numerical precision.
|
||||
CVPR2017 paper:Zhong Z, Zheng L, Cao D, et al. Re-ranking Person Re-identification with k-reciprocal Encoding[J]. 2017.
|
||||
url:http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhong_Re-Ranking_Person_Re-Identification_CVPR_2017_paper.pdf
|
||||
Matlab version: https://github.com/zhunzhong07/person-re-ranking
|
||||
API
|
||||
q_g_dist: query-gallery distance matrix, numpy array, shape [num_query, num_gallery]
|
||||
q_q_dist: query-query distance matrix, numpy array, shape [num_query, num_query]
|
||||
g_g_dist: gallery-gallery distance matrix, numpy array, shape [num_gallery, num_gallery]
|
||||
k1, k2, lambda_value: parameters, the original paper is (k1=20, k2=6, lambda_value=0.3)
|
||||
Returns:
|
||||
final_dist: re-ranked distance, numpy array, shape [num_query, num_gallery]
|
||||
"""
|
||||
|
||||
__all__ = ['re_ranking']
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def re_ranking(q_g_dist, q_q_dist, g_g_dist, k1=20, k2=6, lambda_value=0.3):
|
||||
|
||||
# The following naming, e.g. gallery_num, is different from outer scope.
|
||||
# Don't care about it.
|
||||
|
||||
original_dist = np.concatenate(
|
||||
[np.concatenate([q_q_dist, q_g_dist], axis=1),
|
||||
np.concatenate([q_g_dist.T, g_g_dist], axis=1)],
|
||||
axis=0)
|
||||
original_dist = np.power(original_dist, 2).astype(np.float32)
|
||||
original_dist = np.transpose(1. * original_dist/np.max(original_dist,axis = 0))
|
||||
V = np.zeros_like(original_dist).astype(np.float32)
|
||||
initial_rank = np.argsort(original_dist).astype(np.int32)
|
||||
|
||||
query_num = q_g_dist.shape[0]
|
||||
gallery_num = q_g_dist.shape[0] + q_g_dist.shape[1]
|
||||
all_num = gallery_num
|
||||
|
||||
for i in range(all_num):
|
||||
# k-reciprocal neighbors
|
||||
forward_k_neigh_index = initial_rank[i,:k1+1]
|
||||
backward_k_neigh_index = initial_rank[forward_k_neigh_index,:k1+1]
|
||||
fi = np.where(backward_k_neigh_index==i)[0]
|
||||
k_reciprocal_index = forward_k_neigh_index[fi]
|
||||
k_reciprocal_expansion_index = k_reciprocal_index
|
||||
for j in range(len(k_reciprocal_index)):
|
||||
candidate = k_reciprocal_index[j]
|
||||
candidate_forward_k_neigh_index = initial_rank[candidate,:int(np.around(k1/2.))+1]
|
||||
candidate_backward_k_neigh_index = initial_rank[candidate_forward_k_neigh_index,:int(np.around(k1/2.))+1]
|
||||
fi_candidate = np.where(candidate_backward_k_neigh_index == candidate)[0]
|
||||
candidate_k_reciprocal_index = candidate_forward_k_neigh_index[fi_candidate]
|
||||
if len(np.intersect1d(candidate_k_reciprocal_index,k_reciprocal_index))> 2./3*len(candidate_k_reciprocal_index):
|
||||
k_reciprocal_expansion_index = np.append(k_reciprocal_expansion_index,candidate_k_reciprocal_index)
|
||||
|
||||
k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index)
|
||||
weight = np.exp(-original_dist[i,k_reciprocal_expansion_index])
|
||||
V[i,k_reciprocal_expansion_index] = 1.*weight/np.sum(weight)
|
||||
original_dist = original_dist[:query_num,]
|
||||
if k2 != 1:
|
||||
V_qe = np.zeros_like(V,dtype=np.float32)
|
||||
for i in range(all_num):
|
||||
V_qe[i,:] = np.mean(V[initial_rank[i,:k2],:],axis=0)
|
||||
V = V_qe
|
||||
del V_qe
|
||||
del initial_rank
|
||||
invIndex = []
|
||||
for i in range(gallery_num):
|
||||
invIndex.append(np.where(V[:,i] != 0)[0])
|
||||
|
||||
jaccard_dist = np.zeros_like(original_dist,dtype = np.float32)
|
||||
|
||||
|
||||
for i in range(query_num):
|
||||
temp_min = np.zeros(shape=[1,gallery_num],dtype=np.float32)
|
||||
indNonZero = np.where(V[i,:] != 0)[0]
|
||||
indImages = []
|
||||
indImages = [invIndex[ind] for ind in indNonZero]
|
||||
for j in range(len(indNonZero)):
|
||||
temp_min[0,indImages[j]] = temp_min[0,indImages[j]]+ np.minimum(V[i,indNonZero[j]],V[indImages[j],indNonZero[j]])
|
||||
jaccard_dist[i] = 1-temp_min/(2.-temp_min)
|
||||
|
||||
final_dist = jaccard_dist*(1-lambda_value) + original_dist*lambda_value
|
||||
del original_dist
|
||||
del V
|
||||
del jaccard_dist
|
||||
final_dist = final_dist[:query_num,query_num:]
|
||||
return final_dist
|
||||
|
Loading…
Reference in New Issue