mirror of https://github.com/JDAI-CV/fast-reid.git
refactor evaluator
parent
6687df06e0
commit
3880b23ab4
|
@ -22,11 +22,11 @@ class PairEvaluator(DatasetEvaluator):
|
|||
self._output_dir = output_dir
|
||||
self._cpu_device = torch.device('cpu')
|
||||
self._predictions = []
|
||||
self._threshold_list = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98]
|
||||
self._threshold_list = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98]
|
||||
|
||||
def reset(self):
|
||||
self._predictions = []
|
||||
|
||||
|
||||
def process(self, inputs, outputs):
|
||||
embedding = outputs['features'].to(self._cpu_device)
|
||||
embedding = embedding.view(embedding.size(0) * 2, -1)
|
||||
|
@ -41,31 +41,31 @@ class PairEvaluator(DatasetEvaluator):
|
|||
'labels': inputs["targets"].to(self._cpu_device).numpy()
|
||||
}
|
||||
self._predictions.append(prediction)
|
||||
|
||||
|
||||
def evaluate(self):
|
||||
if comm.get_world_size() > 1:
|
||||
comm.synchronize()
|
||||
predictions = comm.gather(self._predictions, dst=0)
|
||||
predictions = list(itertools.chain(*predictions))
|
||||
|
||||
if not comm.is_main_process():
|
||||
if not comm.is_main_process():
|
||||
return {}
|
||||
else:
|
||||
predictions = self._predictions
|
||||
|
||||
|
||||
all_distances = []
|
||||
all_labels = []
|
||||
for prediction in predictions:
|
||||
all_distances.append(prediction['distances'])
|
||||
all_labels.append(prediction['labels'])
|
||||
|
||||
|
||||
all_distances = np.concatenate(all_distances)
|
||||
all_labels = np.concatenate(all_labels)
|
||||
|
||||
# 计算这3个总体值,还有给定阈值下的precision, recall, f1
|
||||
acc = skmetrics.accuracy_score(all_labels, all_distances > 0.5)
|
||||
ap = skmetrics.average_precision_score(all_labels, all_distances)
|
||||
auc = skmetrics.roc_auc_score(all_labels, all_distances) # auc under roc
|
||||
auc = skmetrics.roc_auc_score(all_labels, all_distances) # auc under roc
|
||||
|
||||
precisions = []
|
||||
recalls = []
|
||||
|
@ -74,11 +74,11 @@ class PairEvaluator(DatasetEvaluator):
|
|||
precision = skmetrics.precision_score(all_labels, all_distances >= thresh, zero_division=0)
|
||||
recall = skmetrics.recall_score(all_labels, all_distances >= thresh, zero_division=0)
|
||||
f1 = 2 * precision * recall / (precision + recall + 1e-12)
|
||||
|
||||
|
||||
precisions.append(precision)
|
||||
recalls.append(recall)
|
||||
f1s.append(f1)
|
||||
|
||||
|
||||
self._results = OrderedDict()
|
||||
self._results['Acc'] = acc
|
||||
self._results['Ap'] = ap
|
||||
|
|
|
@ -0,0 +1,24 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
# @Time : 2021/10/27 15:56:52
|
||||
# @Author : zuchen.wang@vipshop.com
|
||||
# @File : pair_score_evaluator.py
|
||||
# coding: utf-8
|
||||
|
||||
import logging
|
||||
|
||||
import torch
|
||||
|
||||
from fastreid.modeling.losses.utils import normalize
|
||||
from .pair_evaluator import PairEvaluator
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PairScoreEvaluator(PairEvaluator):
|
||||
|
||||
def process(self, inputs, outputs):
|
||||
prediction = {
|
||||
'distances': outputs['cls_outputs'].to(self._cpu_device).numpy(),
|
||||
'labels': inputs["targets"].to(self._cpu_device).numpy()
|
||||
}
|
||||
self._predictions.append(prediction)
|
|
@ -0,0 +1,28 @@
|
|||
# coding: utf-8
|
||||
|
||||
import logging
|
||||
|
||||
import torch
|
||||
|
||||
from fastreid.modeling.losses.utils import normalize
|
||||
from .pair_evaluator import PairEvaluator
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PairDistanceEvaluator(PairEvaluator):
|
||||
|
||||
def process(self, inputs, outputs):
|
||||
embedding = outputs['features'].to(self._cpu_device)
|
||||
embedding = embedding.view(embedding.size(0) * 2, -1)
|
||||
embedding = normalize(embedding, axis=-1)
|
||||
embed1 = embedding[0:len(embedding):2, :]
|
||||
embed2 = embedding[1:len(embedding):2, :]
|
||||
distances = torch.mul(embed1, embed2).sum(-1).numpy()
|
||||
|
||||
# print(distances)
|
||||
prediction = {
|
||||
'distances': distances,
|
||||
'labels': inputs["targets"].to(self._cpu_device).numpy()
|
||||
}
|
||||
self._predictions.append(prediction)
|
|
@ -13,7 +13,7 @@ from fastreid.data.datasets import DATASET_REGISTRY
|
|||
from fastreid.utils import comm
|
||||
from fastreid.data.transforms import build_transforms
|
||||
from fastreid.data.build import build_reid_train_loader, build_reid_test_loader
|
||||
from fastreid.evaluation.pair_evaluator import PairEvaluator
|
||||
from fastreid.evaluation.pair_score_evaluator import PairScoreEvaluator
|
||||
from projects.FastShoe.fastshoe.data import PairDataset
|
||||
|
||||
|
||||
|
@ -85,4 +85,4 @@ class PairTrainer(DefaultTrainer):
|
|||
@classmethod
|
||||
def build_evaluator(cls, cfg, dataset_name, output_dir=None):
|
||||
data_loader = cls.build_test_loader(cfg, dataset_name)
|
||||
return data_loader, PairEvaluator(cfg, output_dir)
|
||||
return data_loader, PairScoreEvaluator(cfg, output_dir)
|
||||
|
|
Loading…
Reference in New Issue