mirror of https://github.com/JDAI-CV/fast-reid.git
add Market1501Attr and DukeMTMCAttr dataloader
parent
c9537c97d1
commit
39e25e0457
|
@ -0,0 +1,11 @@
|
|||
_BASE_: Base-attribute.yml
|
||||
|
||||
DATASETS:
|
||||
NAMES: ("DukeMTMCAttr",)
|
||||
TESTS: ("DukeMTMCAttr",)
|
||||
|
||||
MODEL:
|
||||
HEADS:
|
||||
NUM_CLASSES: 23
|
||||
|
||||
OUTPUT_DIR: projects/FastAttr/logs/dukemtmc/strong_baseline
|
|
@ -0,0 +1,11 @@
|
|||
_BASE_: Base-attribute.yml
|
||||
|
||||
DATASETS:
|
||||
NAMES: ("Market1501Attr",)
|
||||
TESTS: ("Market1501Attr",)
|
||||
|
||||
MODEL:
|
||||
HEADS:
|
||||
NUM_CLASSES: 27
|
||||
|
||||
OUTPUT_DIR: projects/FastAttr/logs/market1501/strong_baseline
|
|
@ -6,3 +6,5 @@
|
|||
|
||||
# Attributed datasets
|
||||
from .pa100k import PA100K
|
||||
from .market1501attr import Market1501Attr
|
||||
from .dukemtmcattr import DukeMTMCAttr
|
||||
|
|
|
@ -0,0 +1,74 @@
|
|||
# encoding: utf-8
|
||||
"""
|
||||
@author: liaoxingyu
|
||||
@contact: liaoxingyu2@jd.com
|
||||
"""
|
||||
|
||||
import glob
|
||||
import os.path as osp
|
||||
import re
|
||||
import mat4py
|
||||
import numpy as np
|
||||
|
||||
from fastreid.data.datasets import DATASET_REGISTRY
|
||||
|
||||
from .bases import Dataset
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class DukeMTMCAttr(Dataset):
|
||||
"""DukeMTMCAttr.
|
||||
|
||||
Reference:
|
||||
Lin, Yutian, et al. "Improving person re-identification by attribute and identity learning."
|
||||
Pattern Recognition 95 (2019): 151-161.
|
||||
|
||||
URL: `<https://github.com/vana77/DukeMTMC-attribute>`_
|
||||
|
||||
The folder structure should be:
|
||||
DukeMTMC-reID/
|
||||
bounding_box_train/ # images
|
||||
bounding_box_test/ # images
|
||||
duke_attribute.mat
|
||||
"""
|
||||
dataset_dir = 'DukeMTMC-reID'
|
||||
dataset_url = 'http://vision.cs.duke.edu/DukeMTMC/data/misc/DukeMTMC-reID.zip'
|
||||
dataset_name = "dukemtmc"
|
||||
|
||||
def __init__(self, root='datasets', **kwargs):
|
||||
self.root = root
|
||||
self.dataset_dir = osp.join(self.root, self.dataset_dir)
|
||||
self.train_dir = osp.join(self.dataset_dir, 'bounding_box_train')
|
||||
self.test_dir = osp.join(self.dataset_dir, 'bounding_box_test')
|
||||
|
||||
required_files = [
|
||||
self.dataset_dir,
|
||||
self.train_dir,
|
||||
self.test_dir,
|
||||
]
|
||||
self.check_before_run(required_files)
|
||||
|
||||
duke_attr = mat4py.loadmat(osp.join(self.dataset_dir, 'duke_attribute.mat'))['duke_attribute']
|
||||
sorted_attrs = sorted(duke_attr['train'].keys())
|
||||
sorted_attrs.remove('image_index')
|
||||
attr_dict = {i: str(attr) for i, attr in enumerate(sorted_attrs)}
|
||||
|
||||
train = self.process_dir(self.train_dir, duke_attr['train'], sorted_attrs)
|
||||
test = val = self.process_dir(self.test_dir, duke_attr['test'], sorted_attrs)
|
||||
|
||||
super(DukeMTMCAttr, self).__init__(train, val, test, attr_dict=attr_dict, **kwargs)
|
||||
|
||||
def process_dir(self, dir_path, annotation, sorted_attrs):
|
||||
img_paths = glob.glob(osp.join(dir_path, '*.jpg'))
|
||||
pattern = re.compile(r'([-\d]+)_c(\d)')
|
||||
|
||||
data = []
|
||||
for img_path in img_paths:
|
||||
pid, camid = map(int, pattern.search(img_path).groups())
|
||||
assert 1 <= camid <= 8
|
||||
|
||||
img_index = annotation['image_index'].index(str(pid).zfill(4))
|
||||
attrs = np.array([int(annotation[i][img_index]) - 1 for i in sorted_attrs], dtype=np.float32)
|
||||
data.append((img_path, attrs))
|
||||
|
||||
return data
|
|
@ -0,0 +1,90 @@
|
|||
# encoding: utf-8
|
||||
"""
|
||||
@author: sherlock
|
||||
@contact: sherlockliao01@gmail.com
|
||||
"""
|
||||
|
||||
import glob
|
||||
import os.path as osp
|
||||
import re
|
||||
import warnings
|
||||
import mat4py
|
||||
import numpy as np
|
||||
|
||||
from fastreid.data.datasets import DATASET_REGISTRY
|
||||
|
||||
from .bases import Dataset
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class Market1501Attr(Dataset):
|
||||
"""Market1501Attr.
|
||||
|
||||
Reference:
|
||||
Lin, Yutian, et al. "Improving person re-identification by attribute and identity learning."
|
||||
Pattern Recognition 95 (2019): 151-161.
|
||||
|
||||
URL: `<https://github.com/vana77/Market-1501_Attribute>`_
|
||||
|
||||
The folder structure should be:
|
||||
Market-1501-v15.09.15/
|
||||
bounding_box_train/ # images
|
||||
bounding_box_test/ # images
|
||||
market_attribute.mat
|
||||
"""
|
||||
_junk_pids = [0, -1]
|
||||
dataset_dir = ''
|
||||
dataset_url = 'http://188.138.127.15:81/Datasets/Market-1501-v15.09.15.zip'
|
||||
dataset_name = "market1501"
|
||||
|
||||
def __init__(self, root='datasets', market1501_500k=False, **kwargs):
|
||||
self.root = root
|
||||
self.dataset_dir = osp.join(self.root, self.dataset_dir)
|
||||
|
||||
# allow alternative directory structure
|
||||
self.data_dir = self.dataset_dir
|
||||
data_dir = osp.join(self.data_dir, 'Market-1501-v15.09.15')
|
||||
if osp.isdir(data_dir):
|
||||
self.data_dir = data_dir
|
||||
else:
|
||||
warnings.warn('The current data structure is deprecated. Please '
|
||||
'put data folders such as "bounding_box_train" under '
|
||||
'"Market-1501-v15.09.15".')
|
||||
|
||||
self.train_dir = osp.join(self.data_dir, 'bounding_box_train')
|
||||
self.test_dir = osp.join(self.data_dir, 'bounding_box_test')
|
||||
|
||||
required_files = [
|
||||
self.data_dir,
|
||||
self.train_dir,
|
||||
self.test_dir,
|
||||
]
|
||||
self.check_before_run(required_files)
|
||||
|
||||
market_attr = mat4py.loadmat(osp.join(self.data_dir, 'market_attribute.mat'))['market_attribute']
|
||||
sorted_attrs = sorted(market_attr['train'].keys())
|
||||
sorted_attrs.remove('image_index')
|
||||
attr_dict = {i: str(attr) for i, attr in enumerate(sorted_attrs)}
|
||||
|
||||
train = self.process_dir(self.train_dir, market_attr['train'], sorted_attrs)
|
||||
test = val = self.process_dir(self.test_dir, market_attr['test'], sorted_attrs)
|
||||
|
||||
super(Market1501Attr, self).__init__(train, val, test, attr_dict=attr_dict, **kwargs)
|
||||
|
||||
def process_dir(self, dir_path, annotation, sorted_attrs):
|
||||
img_paths = glob.glob(osp.join(dir_path, '*.jpg'))
|
||||
pattern = re.compile(r'([-\d]+)_c(\d)')
|
||||
|
||||
data = []
|
||||
for img_path in img_paths:
|
||||
pid, camid = map(int, pattern.search(img_path).groups())
|
||||
if pid == -1 or pid == 0:
|
||||
continue # junk images are just ignored
|
||||
assert 0 <= pid <= 1501 # pid == 0 means background
|
||||
assert 1 <= camid <= 6
|
||||
|
||||
img_index = annotation['image_index'].index(str(pid).zfill(4))
|
||||
attrs = np.array([int(annotation[i][img_index])-1 for i in sorted_attrs], dtype=np.float32)
|
||||
data.append((img_path, attrs))
|
||||
|
||||
return data
|
Loading…
Reference in New Issue