mirror of https://github.com/JDAI-CV/fast-reid.git
feat: support multiprocess predictor
add asyncpredictor to support multiprocessing feature extraction with dataloaderpull/49/head
parent
4be4cacb73
commit
651e6ba9c4
35
demo/demo.py
35
demo/demo.py
|
@ -17,7 +17,7 @@ from torch.backends import cudnn
|
|||
sys.path.append('..')
|
||||
|
||||
from fastreid.config import get_cfg
|
||||
from fastreid.engine import DefaultPredictor
|
||||
from predictor import FeatureExtractionDemo
|
||||
|
||||
cudnn.benchmark = True
|
||||
|
||||
|
@ -32,26 +32,28 @@ def setup_cfg(args):
|
|||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(description="FastReID demo for builtin models")
|
||||
parser = argparse.ArgumentParser(description="Feature extraction with reid models")
|
||||
parser.add_argument(
|
||||
"--config-file",
|
||||
default="configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml",
|
||||
metavar="FILE",
|
||||
help="path to config file",
|
||||
)
|
||||
parser.add_argument(
|
||||
'--device',
|
||||
default='cuda: 1',
|
||||
help='CUDA device to use'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--parallel',
|
||||
action='store_true',
|
||||
help='If use multiprocess for feature extraction.'
|
||||
)
|
||||
parser.add_argument(
|
||||
"--input",
|
||||
nargs="+",
|
||||
help="A list of space separated input images; "
|
||||
"or a single glob pattern such as 'directory/*.jpg'",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output",
|
||||
default="traced_module/",
|
||||
help="A file or directory to save export jit module.",
|
||||
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--opts",
|
||||
help="Modify config options using the command-line 'KEY VALUE' pairs",
|
||||
|
@ -64,19 +66,18 @@ def get_parser():
|
|||
if __name__ == '__main__':
|
||||
args = get_parser().parse_args()
|
||||
cfg = setup_cfg(args)
|
||||
demo = DefaultPredictor(cfg)
|
||||
demo = FeatureExtractionDemo(cfg, device=args.device, parallel=args.parallel)
|
||||
|
||||
feats = []
|
||||
if args.input:
|
||||
if len(args.input) == 1:
|
||||
args.input = glob.glob(os.path.expanduser(args.input[0]))
|
||||
assert args.input, "The input path(s) was not found"
|
||||
for path in tqdm.tqdm(args.input, disable=not args.output):
|
||||
for path in tqdm.tqdm(args.input):
|
||||
img = cv2.imread(path)
|
||||
feats.append(demo(img))
|
||||
feat = demo.run_on_image(img)
|
||||
feats.append(feat.numpy())
|
||||
|
||||
cos_12 = np.dot(feats[0], feats[1].T).item()
|
||||
cos_13 = np.dot(feats[0], feats[2].T).item()
|
||||
cos_23 = np.dot(feats[1], feats[2].T).item()
|
||||
cos_sim = np.dot(feats[0], feats[1].T).item()
|
||||
|
||||
print('cosine similarity is {:.4f}, {:.4f}, {:.4f}'.format(cos_12, cos_13, cos_23))
|
||||
print('cosine similarity of the first two images is {:.4f}'.format(cos_sim))
|
||||
|
|
|
@ -0,0 +1,185 @@
|
|||
# encoding: utf-8
|
||||
"""
|
||||
@author: xingyu liao
|
||||
@contact: liaoxingyu5@jd.com
|
||||
"""
|
||||
|
||||
import atexit
|
||||
import bisect
|
||||
|
||||
import cv2
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
from collections import deque
|
||||
|
||||
from fastreid.engine import DefaultPredictor
|
||||
|
||||
try:
|
||||
mp.set_start_method('spawn')
|
||||
except RuntimeError:
|
||||
pass
|
||||
|
||||
|
||||
class FeatureExtractionDemo(object):
|
||||
def __init__(self, cfg, device='cuda:0', parallel=False):
|
||||
"""
|
||||
Args:
|
||||
cfg (CfgNode):
|
||||
parallel (bool) whether to run the model in different processes from visualization.:
|
||||
Useful since the visualization logic can be slow.
|
||||
"""
|
||||
self.cfg = cfg
|
||||
self.parallel = parallel
|
||||
|
||||
if parallel:
|
||||
self.num_gpus = torch.cuda.device_count()
|
||||
self.predictor = AsyncPredictor(cfg, self.num_gpus)
|
||||
else:
|
||||
self.predictor = DefaultPredictor(cfg, device)
|
||||
|
||||
num_channels = len(cfg.MODEL.PIXEL_MEAN)
|
||||
self.mean = torch.tensor(cfg.MODEL.PIXEL_MEAN).view(1, num_channels, 1, 1)
|
||||
self.std = torch.tensor(cfg.MODEL.PIXEL_STD).view(1, num_channels, 1, 1)
|
||||
|
||||
def run_on_image(self, original_image):
|
||||
"""
|
||||
|
||||
Args:
|
||||
original_image (np.ndarray): an image of shape (H, W, C) (in BGR order).
|
||||
This is the format used by OpenCV.
|
||||
|
||||
Returns:
|
||||
predictions (np.ndarray): normalized feature of the model.
|
||||
"""
|
||||
# the model expects RGB inputs
|
||||
original_image = original_image[:, :, ::-1]
|
||||
# Apply pre-processing to image.
|
||||
image = cv2.resize(original_image, tuple(self.cfg.INPUT.SIZE_TEST[::-1]), interpolation=cv2.INTER_CUBIC)
|
||||
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))[None]
|
||||
image.sub_(self.mean).div_(self.std)
|
||||
predictions = self.predictor(image)
|
||||
return predictions
|
||||
|
||||
def run_on_loader(self, data_loader):
|
||||
|
||||
image_gen = self._image_from_loader(data_loader)
|
||||
if self.parallel:
|
||||
buffer_size = self.predictor.default_buffer_size
|
||||
|
||||
batch_data = deque()
|
||||
|
||||
for cnt, batch in enumerate(image_gen):
|
||||
batch_data.append(batch)
|
||||
self.predictor.put(batch['images'])
|
||||
|
||||
if cnt >= buffer_size:
|
||||
batch = batch_data.popleft()
|
||||
predictions = self.predictor.get()
|
||||
yield predictions, batch['targets'].numpy(), batch['camid'].numpy()
|
||||
|
||||
while len(batch_data):
|
||||
batch = batch_data.popleft()
|
||||
predictions = self.predictor.get()
|
||||
yield predictions, batch['targets'].numpy(), batch['camid'].numpy()
|
||||
else:
|
||||
for batch in image_gen:
|
||||
predictions = self.predictor(batch['images'])
|
||||
yield predictions, batch['targets'].numpy(), batch['camid'].numpy()
|
||||
|
||||
def _image_from_loader(self, data_loader):
|
||||
data_loader.reset()
|
||||
data = data_loader.next()
|
||||
while data is not None:
|
||||
yield data
|
||||
data = data_loader.next()
|
||||
|
||||
|
||||
class AsyncPredictor:
|
||||
"""
|
||||
A predictor that runs the model asynchronously, possibly on >1 GPUs.
|
||||
Because when the amount of data is large.
|
||||
"""
|
||||
|
||||
class _StopToken:
|
||||
pass
|
||||
|
||||
class _PredictWorker(mp.Process):
|
||||
def __init__(self, cfg, device, task_queue, result_queue):
|
||||
self.cfg = cfg
|
||||
self.device = device
|
||||
self.task_queue = task_queue
|
||||
self.result_queue = result_queue
|
||||
super().__init__()
|
||||
|
||||
def run(self):
|
||||
predictor = DefaultPredictor(self.cfg, self.device)
|
||||
|
||||
while True:
|
||||
task = self.task_queue.get()
|
||||
if isinstance(task, AsyncPredictor._StopToken):
|
||||
break
|
||||
idx, data = task
|
||||
result = predictor(data)
|
||||
self.result_queue.put((idx, result))
|
||||
|
||||
def __init__(self, cfg, num_gpus: int = 1):
|
||||
"""
|
||||
|
||||
Args:
|
||||
cfg (CfgNode):
|
||||
num_gpus (int): if 0, will run on CPU
|
||||
"""
|
||||
num_workers = max(num_gpus, 1)
|
||||
self.task_queue = mp.Queue(maxsize=num_workers * 3)
|
||||
self.result_queue = mp.Queue(maxsize=num_workers * 3)
|
||||
self.procs = []
|
||||
for gpuid in range(max(num_gpus, 1)):
|
||||
device = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu"
|
||||
self.procs.append(
|
||||
AsyncPredictor._PredictWorker(cfg, device, self.task_queue, self.result_queue)
|
||||
)
|
||||
|
||||
self.put_idx = 0
|
||||
self.get_idx = 0
|
||||
self.result_rank = []
|
||||
self.result_data = []
|
||||
|
||||
for p in self.procs:
|
||||
p.start()
|
||||
|
||||
atexit.register(self.shutdown)
|
||||
|
||||
def put(self, image):
|
||||
self.put_idx += 1
|
||||
self.task_queue.put((self.put_idx, image))
|
||||
|
||||
def get(self):
|
||||
self.get_idx += 1
|
||||
if len(self.result_rank) and self.result_rank[0] == self.get_idx:
|
||||
res = self.result_data[0]
|
||||
del self.result_data[0], self.result_rank[0]
|
||||
return res
|
||||
|
||||
while True:
|
||||
# Make sure the results are returned in the correct order
|
||||
idx, res = self.result_queue.get()
|
||||
if idx == self.get_idx:
|
||||
return res
|
||||
insert = bisect.bisect(self.result_rank, idx)
|
||||
self.result_rank.insert(insert, idx)
|
||||
self.result_data.insert(insert, res)
|
||||
|
||||
def __len__(self):
|
||||
return self.put_idx - self.get_idx
|
||||
|
||||
def __call__(self, image):
|
||||
self.put(image)
|
||||
return self.get()
|
||||
|
||||
def shutdown(self):
|
||||
for _ in self.procs:
|
||||
self.task_queue.put(AsyncPredictor._StopToken())
|
||||
|
||||
@property
|
||||
def default_buffer_size(self):
|
||||
return len(self.procs) * 5
|
|
@ -13,8 +13,6 @@ import logging
|
|||
import os
|
||||
from collections import OrderedDict
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.nn import DataParallel
|
||||
|
@ -131,40 +129,32 @@ class DefaultPredictor:
|
|||
outputs = pred(inputs)
|
||||
"""
|
||||
|
||||
def __init__(self, cfg):
|
||||
def __init__(self, cfg, device='cpu'):
|
||||
self.cfg = cfg.clone() # cfg can be modified by model
|
||||
model = build_model(self.cfg)
|
||||
self.model = DataParallel(model)
|
||||
self.model.cuda()
|
||||
self.cfg.defrost()
|
||||
self.cfg.MODEL.BACKBONE.PRETRAIN = False
|
||||
self.device = device
|
||||
self.model = build_model(self.cfg)
|
||||
self.model.to(device)
|
||||
self.model.eval()
|
||||
|
||||
checkpointer = Checkpointer(self.model)
|
||||
checkpointer.load(cfg.MODEL.WEIGHTS)
|
||||
|
||||
num_channels = len(cfg.MODEL.PIXEL_MEAN)
|
||||
self.mean = torch.tensor(cfg.MODEL.PIXEL_MEAN).view(1, num_channels, 1, 1)
|
||||
self.std = torch.tensor(cfg.MODEL.PIXEL_STD).view(1, num_channels, 1, 1)
|
||||
|
||||
def __call__(self, original_image):
|
||||
def __call__(self, image):
|
||||
"""
|
||||
Args:
|
||||
original_image (np.ndarray): an image of shape (H, W, C) (in BGR order).
|
||||
image (torch.tensor): an image tensor of shape (B, C, H, W).
|
||||
Returns:
|
||||
predictions (np.ndarray): the output of the model
|
||||
predictions (torch.tensor): the output features of the model
|
||||
"""
|
||||
with torch.no_grad(): # https://github.com/sphinx-doc/sphinx/issues/4258
|
||||
# Apply pre-processing to image.
|
||||
# the model expects RGB inputs
|
||||
original_image = original_image[:, :, ::-1]
|
||||
image = cv2.resize(original_image, tuple(self.cfg.INPUT.SIZE_TEST[::-1]), interpolation=cv2.INTER_CUBIC)
|
||||
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))[None]
|
||||
image.sub_(self.mean).div_(self.std)
|
||||
|
||||
image = image.to(self.device)
|
||||
inputs = {"images": image}
|
||||
pred_feat = self.model(inputs)
|
||||
predictions = self.model(inputs)
|
||||
# Normalize feature to compute cosine distance
|
||||
pred_feat = F.normalize(pred_feat)
|
||||
pred_feat = pred_feat.cpu().data.numpy()
|
||||
pred_feat = F.normalize(predictions)
|
||||
pred_feat = pred_feat.cpu().data
|
||||
return pred_feat
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue