mirror of https://github.com/JDAI-CV/fast-reid.git
feat: support multiprocess predictor
add asyncpredictor to support multiprocessing feature extraction with dataloaderpull/49/head
parent
4be4cacb73
commit
651e6ba9c4
35
demo/demo.py
35
demo/demo.py
|
@ -17,7 +17,7 @@ from torch.backends import cudnn
|
||||||
sys.path.append('..')
|
sys.path.append('..')
|
||||||
|
|
||||||
from fastreid.config import get_cfg
|
from fastreid.config import get_cfg
|
||||||
from fastreid.engine import DefaultPredictor
|
from predictor import FeatureExtractionDemo
|
||||||
|
|
||||||
cudnn.benchmark = True
|
cudnn.benchmark = True
|
||||||
|
|
||||||
|
@ -32,26 +32,28 @@ def setup_cfg(args):
|
||||||
|
|
||||||
|
|
||||||
def get_parser():
|
def get_parser():
|
||||||
parser = argparse.ArgumentParser(description="FastReID demo for builtin models")
|
parser = argparse.ArgumentParser(description="Feature extraction with reid models")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--config-file",
|
"--config-file",
|
||||||
default="configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml",
|
|
||||||
metavar="FILE",
|
metavar="FILE",
|
||||||
help="path to config file",
|
help="path to config file",
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
'--device',
|
||||||
|
default='cuda: 1',
|
||||||
|
help='CUDA device to use'
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
'--parallel',
|
||||||
|
action='store_true',
|
||||||
|
help='If use multiprocess for feature extraction.'
|
||||||
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--input",
|
"--input",
|
||||||
nargs="+",
|
nargs="+",
|
||||||
help="A list of space separated input images; "
|
help="A list of space separated input images; "
|
||||||
"or a single glob pattern such as 'directory/*.jpg'",
|
"or a single glob pattern such as 'directory/*.jpg'",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
|
||||||
"--output",
|
|
||||||
default="traced_module/",
|
|
||||||
help="A file or directory to save export jit module.",
|
|
||||||
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--opts",
|
"--opts",
|
||||||
help="Modify config options using the command-line 'KEY VALUE' pairs",
|
help="Modify config options using the command-line 'KEY VALUE' pairs",
|
||||||
|
@ -64,19 +66,18 @@ def get_parser():
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
args = get_parser().parse_args()
|
args = get_parser().parse_args()
|
||||||
cfg = setup_cfg(args)
|
cfg = setup_cfg(args)
|
||||||
demo = DefaultPredictor(cfg)
|
demo = FeatureExtractionDemo(cfg, device=args.device, parallel=args.parallel)
|
||||||
|
|
||||||
feats = []
|
feats = []
|
||||||
if args.input:
|
if args.input:
|
||||||
if len(args.input) == 1:
|
if len(args.input) == 1:
|
||||||
args.input = glob.glob(os.path.expanduser(args.input[0]))
|
args.input = glob.glob(os.path.expanduser(args.input[0]))
|
||||||
assert args.input, "The input path(s) was not found"
|
assert args.input, "The input path(s) was not found"
|
||||||
for path in tqdm.tqdm(args.input, disable=not args.output):
|
for path in tqdm.tqdm(args.input):
|
||||||
img = cv2.imread(path)
|
img = cv2.imread(path)
|
||||||
feats.append(demo(img))
|
feat = demo.run_on_image(img)
|
||||||
|
feats.append(feat.numpy())
|
||||||
|
|
||||||
cos_12 = np.dot(feats[0], feats[1].T).item()
|
cos_sim = np.dot(feats[0], feats[1].T).item()
|
||||||
cos_13 = np.dot(feats[0], feats[2].T).item()
|
|
||||||
cos_23 = np.dot(feats[1], feats[2].T).item()
|
|
||||||
|
|
||||||
print('cosine similarity is {:.4f}, {:.4f}, {:.4f}'.format(cos_12, cos_13, cos_23))
|
print('cosine similarity of the first two images is {:.4f}'.format(cos_sim))
|
||||||
|
|
|
@ -0,0 +1,185 @@
|
||||||
|
# encoding: utf-8
|
||||||
|
"""
|
||||||
|
@author: xingyu liao
|
||||||
|
@contact: liaoxingyu5@jd.com
|
||||||
|
"""
|
||||||
|
|
||||||
|
import atexit
|
||||||
|
import bisect
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import torch
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
from collections import deque
|
||||||
|
|
||||||
|
from fastreid.engine import DefaultPredictor
|
||||||
|
|
||||||
|
try:
|
||||||
|
mp.set_start_method('spawn')
|
||||||
|
except RuntimeError:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class FeatureExtractionDemo(object):
|
||||||
|
def __init__(self, cfg, device='cuda:0', parallel=False):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
cfg (CfgNode):
|
||||||
|
parallel (bool) whether to run the model in different processes from visualization.:
|
||||||
|
Useful since the visualization logic can be slow.
|
||||||
|
"""
|
||||||
|
self.cfg = cfg
|
||||||
|
self.parallel = parallel
|
||||||
|
|
||||||
|
if parallel:
|
||||||
|
self.num_gpus = torch.cuda.device_count()
|
||||||
|
self.predictor = AsyncPredictor(cfg, self.num_gpus)
|
||||||
|
else:
|
||||||
|
self.predictor = DefaultPredictor(cfg, device)
|
||||||
|
|
||||||
|
num_channels = len(cfg.MODEL.PIXEL_MEAN)
|
||||||
|
self.mean = torch.tensor(cfg.MODEL.PIXEL_MEAN).view(1, num_channels, 1, 1)
|
||||||
|
self.std = torch.tensor(cfg.MODEL.PIXEL_STD).view(1, num_channels, 1, 1)
|
||||||
|
|
||||||
|
def run_on_image(self, original_image):
|
||||||
|
"""
|
||||||
|
|
||||||
|
Args:
|
||||||
|
original_image (np.ndarray): an image of shape (H, W, C) (in BGR order).
|
||||||
|
This is the format used by OpenCV.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
predictions (np.ndarray): normalized feature of the model.
|
||||||
|
"""
|
||||||
|
# the model expects RGB inputs
|
||||||
|
original_image = original_image[:, :, ::-1]
|
||||||
|
# Apply pre-processing to image.
|
||||||
|
image = cv2.resize(original_image, tuple(self.cfg.INPUT.SIZE_TEST[::-1]), interpolation=cv2.INTER_CUBIC)
|
||||||
|
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))[None]
|
||||||
|
image.sub_(self.mean).div_(self.std)
|
||||||
|
predictions = self.predictor(image)
|
||||||
|
return predictions
|
||||||
|
|
||||||
|
def run_on_loader(self, data_loader):
|
||||||
|
|
||||||
|
image_gen = self._image_from_loader(data_loader)
|
||||||
|
if self.parallel:
|
||||||
|
buffer_size = self.predictor.default_buffer_size
|
||||||
|
|
||||||
|
batch_data = deque()
|
||||||
|
|
||||||
|
for cnt, batch in enumerate(image_gen):
|
||||||
|
batch_data.append(batch)
|
||||||
|
self.predictor.put(batch['images'])
|
||||||
|
|
||||||
|
if cnt >= buffer_size:
|
||||||
|
batch = batch_data.popleft()
|
||||||
|
predictions = self.predictor.get()
|
||||||
|
yield predictions, batch['targets'].numpy(), batch['camid'].numpy()
|
||||||
|
|
||||||
|
while len(batch_data):
|
||||||
|
batch = batch_data.popleft()
|
||||||
|
predictions = self.predictor.get()
|
||||||
|
yield predictions, batch['targets'].numpy(), batch['camid'].numpy()
|
||||||
|
else:
|
||||||
|
for batch in image_gen:
|
||||||
|
predictions = self.predictor(batch['images'])
|
||||||
|
yield predictions, batch['targets'].numpy(), batch['camid'].numpy()
|
||||||
|
|
||||||
|
def _image_from_loader(self, data_loader):
|
||||||
|
data_loader.reset()
|
||||||
|
data = data_loader.next()
|
||||||
|
while data is not None:
|
||||||
|
yield data
|
||||||
|
data = data_loader.next()
|
||||||
|
|
||||||
|
|
||||||
|
class AsyncPredictor:
|
||||||
|
"""
|
||||||
|
A predictor that runs the model asynchronously, possibly on >1 GPUs.
|
||||||
|
Because when the amount of data is large.
|
||||||
|
"""
|
||||||
|
|
||||||
|
class _StopToken:
|
||||||
|
pass
|
||||||
|
|
||||||
|
class _PredictWorker(mp.Process):
|
||||||
|
def __init__(self, cfg, device, task_queue, result_queue):
|
||||||
|
self.cfg = cfg
|
||||||
|
self.device = device
|
||||||
|
self.task_queue = task_queue
|
||||||
|
self.result_queue = result_queue
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
predictor = DefaultPredictor(self.cfg, self.device)
|
||||||
|
|
||||||
|
while True:
|
||||||
|
task = self.task_queue.get()
|
||||||
|
if isinstance(task, AsyncPredictor._StopToken):
|
||||||
|
break
|
||||||
|
idx, data = task
|
||||||
|
result = predictor(data)
|
||||||
|
self.result_queue.put((idx, result))
|
||||||
|
|
||||||
|
def __init__(self, cfg, num_gpus: int = 1):
|
||||||
|
"""
|
||||||
|
|
||||||
|
Args:
|
||||||
|
cfg (CfgNode):
|
||||||
|
num_gpus (int): if 0, will run on CPU
|
||||||
|
"""
|
||||||
|
num_workers = max(num_gpus, 1)
|
||||||
|
self.task_queue = mp.Queue(maxsize=num_workers * 3)
|
||||||
|
self.result_queue = mp.Queue(maxsize=num_workers * 3)
|
||||||
|
self.procs = []
|
||||||
|
for gpuid in range(max(num_gpus, 1)):
|
||||||
|
device = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu"
|
||||||
|
self.procs.append(
|
||||||
|
AsyncPredictor._PredictWorker(cfg, device, self.task_queue, self.result_queue)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.put_idx = 0
|
||||||
|
self.get_idx = 0
|
||||||
|
self.result_rank = []
|
||||||
|
self.result_data = []
|
||||||
|
|
||||||
|
for p in self.procs:
|
||||||
|
p.start()
|
||||||
|
|
||||||
|
atexit.register(self.shutdown)
|
||||||
|
|
||||||
|
def put(self, image):
|
||||||
|
self.put_idx += 1
|
||||||
|
self.task_queue.put((self.put_idx, image))
|
||||||
|
|
||||||
|
def get(self):
|
||||||
|
self.get_idx += 1
|
||||||
|
if len(self.result_rank) and self.result_rank[0] == self.get_idx:
|
||||||
|
res = self.result_data[0]
|
||||||
|
del self.result_data[0], self.result_rank[0]
|
||||||
|
return res
|
||||||
|
|
||||||
|
while True:
|
||||||
|
# Make sure the results are returned in the correct order
|
||||||
|
idx, res = self.result_queue.get()
|
||||||
|
if idx == self.get_idx:
|
||||||
|
return res
|
||||||
|
insert = bisect.bisect(self.result_rank, idx)
|
||||||
|
self.result_rank.insert(insert, idx)
|
||||||
|
self.result_data.insert(insert, res)
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return self.put_idx - self.get_idx
|
||||||
|
|
||||||
|
def __call__(self, image):
|
||||||
|
self.put(image)
|
||||||
|
return self.get()
|
||||||
|
|
||||||
|
def shutdown(self):
|
||||||
|
for _ in self.procs:
|
||||||
|
self.task_queue.put(AsyncPredictor._StopToken())
|
||||||
|
|
||||||
|
@property
|
||||||
|
def default_buffer_size(self):
|
||||||
|
return len(self.procs) * 5
|
|
@ -13,8 +13,6 @@ import logging
|
||||||
import os
|
import os
|
||||||
from collections import OrderedDict
|
from collections import OrderedDict
|
||||||
|
|
||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from torch.nn import DataParallel
|
from torch.nn import DataParallel
|
||||||
|
@ -131,40 +129,32 @@ class DefaultPredictor:
|
||||||
outputs = pred(inputs)
|
outputs = pred(inputs)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, cfg):
|
def __init__(self, cfg, device='cpu'):
|
||||||
self.cfg = cfg.clone() # cfg can be modified by model
|
self.cfg = cfg.clone() # cfg can be modified by model
|
||||||
model = build_model(self.cfg)
|
self.cfg.defrost()
|
||||||
self.model = DataParallel(model)
|
self.cfg.MODEL.BACKBONE.PRETRAIN = False
|
||||||
self.model.cuda()
|
self.device = device
|
||||||
|
self.model = build_model(self.cfg)
|
||||||
|
self.model.to(device)
|
||||||
self.model.eval()
|
self.model.eval()
|
||||||
|
|
||||||
checkpointer = Checkpointer(self.model)
|
checkpointer = Checkpointer(self.model)
|
||||||
checkpointer.load(cfg.MODEL.WEIGHTS)
|
checkpointer.load(cfg.MODEL.WEIGHTS)
|
||||||
|
|
||||||
num_channels = len(cfg.MODEL.PIXEL_MEAN)
|
def __call__(self, image):
|
||||||
self.mean = torch.tensor(cfg.MODEL.PIXEL_MEAN).view(1, num_channels, 1, 1)
|
|
||||||
self.std = torch.tensor(cfg.MODEL.PIXEL_STD).view(1, num_channels, 1, 1)
|
|
||||||
|
|
||||||
def __call__(self, original_image):
|
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
original_image (np.ndarray): an image of shape (H, W, C) (in BGR order).
|
image (torch.tensor): an image tensor of shape (B, C, H, W).
|
||||||
Returns:
|
Returns:
|
||||||
predictions (np.ndarray): the output of the model
|
predictions (torch.tensor): the output features of the model
|
||||||
"""
|
"""
|
||||||
with torch.no_grad(): # https://github.com/sphinx-doc/sphinx/issues/4258
|
with torch.no_grad(): # https://github.com/sphinx-doc/sphinx/issues/4258
|
||||||
# Apply pre-processing to image.
|
image = image.to(self.device)
|
||||||
# the model expects RGB inputs
|
|
||||||
original_image = original_image[:, :, ::-1]
|
|
||||||
image = cv2.resize(original_image, tuple(self.cfg.INPUT.SIZE_TEST[::-1]), interpolation=cv2.INTER_CUBIC)
|
|
||||||
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))[None]
|
|
||||||
image.sub_(self.mean).div_(self.std)
|
|
||||||
|
|
||||||
inputs = {"images": image}
|
inputs = {"images": image}
|
||||||
pred_feat = self.model(inputs)
|
predictions = self.model(inputs)
|
||||||
# Normalize feature to compute cosine distance
|
# Normalize feature to compute cosine distance
|
||||||
pred_feat = F.normalize(pred_feat)
|
pred_feat = F.normalize(predictions)
|
||||||
pred_feat = pred_feat.cpu().data.numpy()
|
pred_feat = pred_feat.cpu().data
|
||||||
return pred_feat
|
return pred_feat
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue