mirror of https://github.com/JDAI-CV/fast-reid.git
update docs
parent
b5c3c0a24d
commit
a53fd17874
|
@ -1,9 +1,9 @@
|
|||
.. detectron2 documentation master file, created by
|
||||
.. fastreid documentation master file, created by
|
||||
sphinx-quickstart on Sat Sep 21 13:46:45 2019.
|
||||
You can adapt this file completely to your liking, but it should at least
|
||||
contain the root `toctree` directive.
|
||||
|
||||
Welcome to detectron2's documentation!
|
||||
Welcome to fastreid's documentation!
|
||||
======================================
|
||||
|
||||
.. toctree::
|
||||
|
|
|
@ -1,9 +0,0 @@
|
|||
fastreid.export
|
||||
=========================
|
||||
|
||||
Related tutorial: :doc:`../tutorials/deployment`.
|
||||
|
||||
.. automodule:: fastreid.export
|
||||
:members:
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
|
@ -1,20 +1,20 @@
|
|||
termcolor
|
||||
numpy
|
||||
tqdm
|
||||
docutils==0.16
|
||||
# https://github.com/sphinx-doc/sphinx/commit/7acd3ada3f38076af7b2b5c9f3b60bb9c2587a3d
|
||||
git+git://github.com/sphinx-doc/sphinx.git@7acd3ada3f38076af7b2b5c9f3b60bb9c2587a3d
|
||||
recommonmark==0.6.0
|
||||
sphinx_rtd_theme
|
||||
matplotlib
|
||||
termcolor
|
||||
yacs
|
||||
tabulate
|
||||
cloudpickle
|
||||
scipy
|
||||
Pillow
|
||||
future
|
||||
requests
|
||||
six
|
||||
git+git://github.com/facebookresearch/fvcore.git
|
||||
https://download.pytorch.org/whl/cpu/torch-1.5.0%2Bcpu-cp37-cp37m-linux_x86_64.whl
|
||||
https://download.pytorch.org/whl/cpu/torchvision-0.6.0%2Bcpu-cp37-cp37m-linux_x86_64.whl
|
||||
numpy
|
||||
prettytable
|
||||
easydict
|
||||
scikit-learn
|
||||
pyyaml
|
||||
yacs
|
||||
termcolor
|
||||
tabulate
|
||||
tensorboard
|
||||
opencv-python
|
||||
pyyaml
|
||||
yacs
|
||||
termcolor
|
||||
scikit-learn
|
||||
tabulate
|
||||
gdown
|
||||
faiss-gpu
|
|
@ -5,16 +5,12 @@
|
|||
"""
|
||||
|
||||
import os
|
||||
from scipy.io import loadmat
|
||||
from glob import glob
|
||||
|
||||
from fastreid.data.datasets import DATASET_REGISTRY
|
||||
from fastreid.data.datasets.bases import ImageDataset
|
||||
import pdb
|
||||
import random
|
||||
import numpy as np
|
||||
|
||||
__all__ = ['CAVIARa',]
|
||||
__all__ = ['CAVIARa', ]
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
|
|
|
@ -100,7 +100,7 @@ class CUHK03(ImageDataset):
|
|||
|
||||
import h5py
|
||||
from imageio import imwrite
|
||||
from scipy.io import loadmat
|
||||
from scipy import io
|
||||
|
||||
PathManager.mkdirs(self.imgs_detected_dir)
|
||||
PathManager.mkdirs(self.imgs_labeled_dir)
|
||||
|
@ -236,7 +236,7 @@ class CUHK03(ImageDataset):
|
|||
|
||||
print('Creating new split for detected images (767/700) ...')
|
||||
train_info, query_info, gallery_info = _extract_new_split(
|
||||
loadmat(self.split_new_det_mat_path),
|
||||
io.loadmat(self.split_new_det_mat_path),
|
||||
self.imgs_detected_dir
|
||||
)
|
||||
split = [{
|
||||
|
@ -256,7 +256,7 @@ class CUHK03(ImageDataset):
|
|||
|
||||
print('Creating new split for labeled images (767/700) ...')
|
||||
train_info, query_info, gallery_info = _extract_new_split(
|
||||
loadmat(self.split_new_lab_mat_path),
|
||||
io.loadmat(self.split_new_lab_mat_path),
|
||||
self.imgs_labeled_dir
|
||||
)
|
||||
split = [{
|
||||
|
|
|
@ -5,12 +5,10 @@
|
|||
"""
|
||||
|
||||
import os
|
||||
from scipy.io import loadmat
|
||||
from glob import glob
|
||||
|
||||
from fastreid.data.datasets import DATASET_REGISTRY
|
||||
from fastreid.data.datasets.bases import ImageDataset
|
||||
import pdb
|
||||
|
||||
__all__ = ['SYSU_mm', ]
|
||||
|
||||
|
@ -37,7 +35,7 @@ class SYSU_mm(ImageDataset):
|
|||
data = []
|
||||
|
||||
file_path_list = ['cam1', 'cam2', 'cam4', 'cam5']
|
||||
|
||||
|
||||
for file_path in file_path_list:
|
||||
camid = self.dataset_name + "_" + file_path
|
||||
pid_list = os.listdir(os.path.join(train_path, file_path))
|
||||
|
@ -47,4 +45,3 @@ class SYSU_mm(ImageDataset):
|
|||
for img_path in img_list:
|
||||
data.append([img_path, pid, camid])
|
||||
return data
|
||||
|
||||
|
|
|
@ -5,16 +5,12 @@
|
|||
"""
|
||||
|
||||
import os
|
||||
from scipy.io import loadmat
|
||||
from glob import glob
|
||||
|
||||
from fastreid.data.datasets import DATASET_REGISTRY
|
||||
from fastreid.data.datasets.bases import ImageDataset
|
||||
import pdb
|
||||
import random
|
||||
import numpy as np
|
||||
|
||||
__all__ = ['Thermalworld',]
|
||||
__all__ = ['Thermalworld', ]
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
|
@ -40,7 +36,7 @@ class Thermalworld(ImageDataset):
|
|||
pid_list = os.listdir(train_path)
|
||||
for pid_dir in pid_list:
|
||||
pid = self.dataset_name + "_" + pid_dir
|
||||
img_list = glob(os.path.join(train_path, pid_dir, "*.jpg"))
|
||||
img_list = glob(os.path.join(train_path, pid_dir, "*.jpg"))
|
||||
for img_path in img_list:
|
||||
camid = self.dataset_name + "_cam0"
|
||||
data.append([img_path, pid, camid])
|
||||
|
|
|
@ -11,7 +11,6 @@ since they are meant to represent the "common default behavior" people need in t
|
|||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import math
|
||||
import sys
|
||||
from collections import OrderedDict
|
||||
|
||||
|
@ -247,7 +246,6 @@ class DefaultTrainer(TrainerBase):
|
|||
**self.scheduler,
|
||||
)
|
||||
|
||||
|
||||
self.start_epoch = 0
|
||||
self.max_epoch = cfg.SOLVER.MAX_EPOCH
|
||||
self.max_iter = self.max_epoch * self.iters_per_epoch
|
||||
|
@ -323,6 +321,7 @@ class DefaultTrainer(TrainerBase):
|
|||
cfg.SOLVER.FREEZE_ITERS,
|
||||
cfg.SOLVER.FREEZE_FC_ITERS,
|
||||
))
|
||||
|
||||
# Do PreciseBN before checkpointer, because it updates the model and need to
|
||||
# be saved by checkpointer.
|
||||
# This is not always the best: if checkpointing has a different frequency,
|
||||
|
|
|
@ -10,8 +10,8 @@ import time
|
|||
from collections import Counter
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from apex.parallel import DistributedDataParallel
|
||||
from torch import nn
|
||||
|
||||
from fastreid.evaluation.testing import flatten_results_dict
|
||||
from fastreid.solver import optim
|
||||
|
|
|
@ -12,7 +12,6 @@ from typing import Dict
|
|||
import numpy as np
|
||||
import torch
|
||||
from apex import amp
|
||||
from apex.parallel import DistributedDataParallel
|
||||
|
||||
import fastreid.utils.comm as comm
|
||||
from fastreid.utils.events import EventStorage, get_event_storage
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
||||
from .evaluator import DatasetEvaluator, inference_context, inference_on_dataset
|
||||
from .rank import evaluate_rank
|
||||
from .roc import evaluate_roc
|
||||
from .reid_evaluation import ReidEvaluator
|
||||
from .roc import evaluate_roc
|
||||
from .testing import print_csv_format, verify_results
|
||||
|
||||
__all__ = [k for k in globals().keys() if not k.startswith("_")]
|
||||
|
|
|
@ -5,7 +5,6 @@ import cython
|
|||
import numpy as np
|
||||
cimport numpy as np
|
||||
from collections import defaultdict
|
||||
import faiss
|
||||
|
||||
|
||||
"""
|
||||
|
|
|
@ -20,4 +20,4 @@ from .meta_arch import (
|
|||
META_ARCH_REGISTRY,
|
||||
)
|
||||
|
||||
__all__ = [k for k in globals().keys() if k not in k.startswith("_")]
|
||||
__all__ = [k for k in globals().keys() if not k.startswith("_")]
|
|
@ -9,4 +9,4 @@ from .cross_entroy_loss import cross_entropy_loss, log_accuracy
|
|||
from .focal_loss import focal_loss
|
||||
from .triplet_loss import triplet_loss
|
||||
|
||||
__all__ = [k for k in globals().keys() if k not in k.startswith("_")]
|
||||
__all__ = [k for k in globals().keys() if not k.startswith("_")]
|
|
@ -5,9 +5,11 @@ import os
|
|||
import sys
|
||||
import time
|
||||
from collections import Counter
|
||||
from .file_io import PathManager
|
||||
|
||||
from termcolor import colored
|
||||
|
||||
from .file_io import PathManager
|
||||
|
||||
|
||||
class _ColorfulFormatter(logging.Formatter):
|
||||
def __init__(self, *args, **kwargs):
|
||||
|
|
|
@ -1,20 +0,0 @@
|
|||
matplotlib
|
||||
scipy
|
||||
Pillow
|
||||
numpy
|
||||
prettytable
|
||||
easydict
|
||||
scikit-learn
|
||||
pyyaml
|
||||
yacs
|
||||
termcolor
|
||||
tabulate
|
||||
tensorboard
|
||||
opencv-python
|
||||
pyyaml
|
||||
yacs
|
||||
termcolor
|
||||
scikit-learn
|
||||
tabulate
|
||||
gdown
|
||||
faiss-gpu
|
Loading…
Reference in New Issue