update docs

This commit is contained in:
liaoxingyu 2021-01-23 15:25:58 +08:00
parent b5c3c0a24d
commit a53fd17874
16 changed files with 35 additions and 77 deletions

View File

@ -1,9 +1,9 @@
.. detectron2 documentation master file, created by .. fastreid documentation master file, created by
sphinx-quickstart on Sat Sep 21 13:46:45 2019. sphinx-quickstart on Sat Sep 21 13:46:45 2019.
You can adapt this file completely to your liking, but it should at least You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive. contain the root `toctree` directive.
Welcome to detectron2's documentation! Welcome to fastreid's documentation!
====================================== ======================================
.. toctree:: .. toctree::

View File

@ -1,9 +0,0 @@
fastreid.export
=========================
Related tutorial: :doc:`../tutorials/deployment`.
.. automodule:: fastreid.export
:members:
:undoc-members:
:show-inheritance:

View File

@ -1,20 +1,20 @@
termcolor
numpy
tqdm
docutils==0.16
# https://github.com/sphinx-doc/sphinx/commit/7acd3ada3f38076af7b2b5c9f3b60bb9c2587a3d
git+git://github.com/sphinx-doc/sphinx.git@7acd3ada3f38076af7b2b5c9f3b60bb9c2587a3d
recommonmark==0.6.0
sphinx_rtd_theme
matplotlib matplotlib
termcolor scipy
yacs
tabulate
cloudpickle
Pillow Pillow
future numpy
requests prettytable
six easydict
git+git://github.com/facebookresearch/fvcore.git scikit-learn
https://download.pytorch.org/whl/cpu/torch-1.5.0%2Bcpu-cp37-cp37m-linux_x86_64.whl pyyaml
https://download.pytorch.org/whl/cpu/torchvision-0.6.0%2Bcpu-cp37-cp37m-linux_x86_64.whl yacs
termcolor
tabulate
tensorboard
opencv-python
pyyaml
yacs
termcolor
scikit-learn
tabulate
gdown
faiss-gpu

View File

@ -5,16 +5,12 @@
""" """
import os import os
from scipy.io import loadmat
from glob import glob from glob import glob
from fastreid.data.datasets import DATASET_REGISTRY from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset from fastreid.data.datasets.bases import ImageDataset
import pdb
import random
import numpy as np
__all__ = ['CAVIARa',] __all__ = ['CAVIARa', ]
@DATASET_REGISTRY.register() @DATASET_REGISTRY.register()

View File

@ -100,7 +100,7 @@ class CUHK03(ImageDataset):
import h5py import h5py
from imageio import imwrite from imageio import imwrite
from scipy.io import loadmat from scipy import io
PathManager.mkdirs(self.imgs_detected_dir) PathManager.mkdirs(self.imgs_detected_dir)
PathManager.mkdirs(self.imgs_labeled_dir) PathManager.mkdirs(self.imgs_labeled_dir)
@ -236,7 +236,7 @@ class CUHK03(ImageDataset):
print('Creating new split for detected images (767/700) ...') print('Creating new split for detected images (767/700) ...')
train_info, query_info, gallery_info = _extract_new_split( train_info, query_info, gallery_info = _extract_new_split(
loadmat(self.split_new_det_mat_path), io.loadmat(self.split_new_det_mat_path),
self.imgs_detected_dir self.imgs_detected_dir
) )
split = [{ split = [{
@ -256,7 +256,7 @@ class CUHK03(ImageDataset):
print('Creating new split for labeled images (767/700) ...') print('Creating new split for labeled images (767/700) ...')
train_info, query_info, gallery_info = _extract_new_split( train_info, query_info, gallery_info = _extract_new_split(
loadmat(self.split_new_lab_mat_path), io.loadmat(self.split_new_lab_mat_path),
self.imgs_labeled_dir self.imgs_labeled_dir
) )
split = [{ split = [{

View File

@ -5,12 +5,10 @@
""" """
import os import os
from scipy.io import loadmat
from glob import glob from glob import glob
from fastreid.data.datasets import DATASET_REGISTRY from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset from fastreid.data.datasets.bases import ImageDataset
import pdb
__all__ = ['SYSU_mm', ] __all__ = ['SYSU_mm', ]
@ -37,7 +35,7 @@ class SYSU_mm(ImageDataset):
data = [] data = []
file_path_list = ['cam1', 'cam2', 'cam4', 'cam5'] file_path_list = ['cam1', 'cam2', 'cam4', 'cam5']
for file_path in file_path_list: for file_path in file_path_list:
camid = self.dataset_name + "_" + file_path camid = self.dataset_name + "_" + file_path
pid_list = os.listdir(os.path.join(train_path, file_path)) pid_list = os.listdir(os.path.join(train_path, file_path))
@ -47,4 +45,3 @@ class SYSU_mm(ImageDataset):
for img_path in img_list: for img_path in img_list:
data.append([img_path, pid, camid]) data.append([img_path, pid, camid])
return data return data

View File

@ -5,16 +5,12 @@
""" """
import os import os
from scipy.io import loadmat
from glob import glob from glob import glob
from fastreid.data.datasets import DATASET_REGISTRY from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset from fastreid.data.datasets.bases import ImageDataset
import pdb
import random
import numpy as np
__all__ = ['Thermalworld',] __all__ = ['Thermalworld', ]
@DATASET_REGISTRY.register() @DATASET_REGISTRY.register()
@ -40,7 +36,7 @@ class Thermalworld(ImageDataset):
pid_list = os.listdir(train_path) pid_list = os.listdir(train_path)
for pid_dir in pid_list: for pid_dir in pid_list:
pid = self.dataset_name + "_" + pid_dir pid = self.dataset_name + "_" + pid_dir
img_list = glob(os.path.join(train_path, pid_dir, "*.jpg")) img_list = glob(os.path.join(train_path, pid_dir, "*.jpg"))
for img_path in img_list: for img_path in img_list:
camid = self.dataset_name + "_cam0" camid = self.dataset_name + "_cam0"
data.append([img_path, pid, camid]) data.append([img_path, pid, camid])

View File

@ -11,7 +11,6 @@ since they are meant to represent the "common default behavior" people need in t
import argparse import argparse
import logging import logging
import os import os
import math
import sys import sys
from collections import OrderedDict from collections import OrderedDict
@ -247,7 +246,6 @@ class DefaultTrainer(TrainerBase):
**self.scheduler, **self.scheduler,
) )
self.start_epoch = 0 self.start_epoch = 0
self.max_epoch = cfg.SOLVER.MAX_EPOCH self.max_epoch = cfg.SOLVER.MAX_EPOCH
self.max_iter = self.max_epoch * self.iters_per_epoch self.max_iter = self.max_epoch * self.iters_per_epoch
@ -323,6 +321,7 @@ class DefaultTrainer(TrainerBase):
cfg.SOLVER.FREEZE_ITERS, cfg.SOLVER.FREEZE_ITERS,
cfg.SOLVER.FREEZE_FC_ITERS, cfg.SOLVER.FREEZE_FC_ITERS,
)) ))
# Do PreciseBN before checkpointer, because it updates the model and need to # Do PreciseBN before checkpointer, because it updates the model and need to
# be saved by checkpointer. # be saved by checkpointer.
# This is not always the best: if checkpointing has a different frequency, # This is not always the best: if checkpointing has a different frequency,

View File

@ -10,8 +10,8 @@ import time
from collections import Counter from collections import Counter
import torch import torch
from torch import nn
from apex.parallel import DistributedDataParallel from apex.parallel import DistributedDataParallel
from torch import nn
from fastreid.evaluation.testing import flatten_results_dict from fastreid.evaluation.testing import flatten_results_dict
from fastreid.solver import optim from fastreid.solver import optim

View File

@ -12,7 +12,6 @@ from typing import Dict
import numpy as np import numpy as np
import torch import torch
from apex import amp from apex import amp
from apex.parallel import DistributedDataParallel
import fastreid.utils.comm as comm import fastreid.utils.comm as comm
from fastreid.utils.events import EventStorage, get_event_storage from fastreid.utils.events import EventStorage, get_event_storage

View File

@ -1,8 +1,7 @@
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from .evaluator import DatasetEvaluator, inference_context, inference_on_dataset from .evaluator import DatasetEvaluator, inference_context, inference_on_dataset
from .rank import evaluate_rank from .rank import evaluate_rank
from .roc import evaluate_roc
from .reid_evaluation import ReidEvaluator from .reid_evaluation import ReidEvaluator
from .roc import evaluate_roc
from .testing import print_csv_format, verify_results from .testing import print_csv_format, verify_results
__all__ = [k for k in globals().keys() if not k.startswith("_")] __all__ = [k for k in globals().keys() if not k.startswith("_")]

View File

@ -5,7 +5,6 @@ import cython
import numpy as np import numpy as np
cimport numpy as np cimport numpy as np
from collections import defaultdict from collections import defaultdict
import faiss
""" """

View File

@ -20,4 +20,4 @@ from .meta_arch import (
META_ARCH_REGISTRY, META_ARCH_REGISTRY,
) )
__all__ = [k for k in globals().keys() if k not in k.startswith("_")] __all__ = [k for k in globals().keys() if not k.startswith("_")]

View File

@ -9,4 +9,4 @@ from .cross_entroy_loss import cross_entropy_loss, log_accuracy
from .focal_loss import focal_loss from .focal_loss import focal_loss
from .triplet_loss import triplet_loss from .triplet_loss import triplet_loss
__all__ = [k for k in globals().keys() if k not in k.startswith("_")] __all__ = [k for k in globals().keys() if not k.startswith("_")]

View File

@ -5,9 +5,11 @@ import os
import sys import sys
import time import time
from collections import Counter from collections import Counter
from .file_io import PathManager
from termcolor import colored from termcolor import colored
from .file_io import PathManager
class _ColorfulFormatter(logging.Formatter): class _ColorfulFormatter(logging.Formatter):
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):

View File

@ -1,20 +0,0 @@
matplotlib
scipy
Pillow
numpy
prettytable
easydict
scikit-learn
pyyaml
yacs
termcolor
tabulate
tensorboard
opencv-python
pyyaml
yacs
termcolor
scikit-learn
tabulate
gdown
faiss-gpu