fix(engine/defaults): fix precise bn bug

fix problem in precise bn, which will not use precise bn datasets, and throw some errors
pull/45/head
liaoxingyu 2020-04-29 16:16:54 +08:00
parent 18fd7faff7
commit e38a799b63
2 changed files with 75 additions and 2 deletions

View File

@ -253,13 +253,13 @@ class DefaultTrainer(SimpleTrainer):
cfg = self.cfg.clone()
cfg.defrost()
cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN
cfg.DATASETS.NAMES = tuple([cfg.TEST.PRECISE_BN.DATASET]) # set dataset name for PreciseBN
ret = [
hooks.IterationTimer(),
hooks.LRScheduler(self.optimizer, self.scheduler),
hooks.PreciseBN(
# Run at the same freq as (but before) evaluation.
cfg.TEST.EVAL_PERIOD,
self.model,
# Build a new data loader to not affect training
self.build_train_loader(cfg),
@ -365,7 +365,7 @@ class DefaultTrainer(SimpleTrainer):
"""
Returns:
iterable
It now calls :func:`detectron2.data.build_detection_train_loader`.
It now calls :func:`fastreid.data.build_detection_train_loader`.
Overwrite it if you'd like a different data loader.
"""
return build_reid_train_loader(cfg)

73
tools/train_net.py 100644
View File

@ -0,0 +1,73 @@
# encoding: utf-8
"""
@author: sherlock
@contact: sherlockliao01@gmail.com
"""
import os
import sys
sys.path.append('.')
from torch import nn
from fastreid.config import get_cfg
from fastreid.engine import DefaultTrainer, default_argument_parser, default_setup
from fastreid.utils.checkpoint import Checkpointer
from fastreid.engine import hooks
from fastreid.evaluation import ReidEvaluator
class Trainer(DefaultTrainer):
@classmethod
def build_evaluator(cls, cfg, num_query, output_folder=None):
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
return ReidEvaluator(cfg, num_query)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
cfg.defrost()
cfg.MODEL.BACKBONE.PRETRAIN = False
model = Trainer.build_model(cfg)
model = nn.DataParallel(model)
model = model.cuda()
Checkpointer(model, save_dir=cfg.OUTPUT_DIR).load(cfg.MODEL.WEIGHTS) # load trained model
if cfg.TEST.PRECISE_BN.ENABLED and hooks.get_bn_modules(model):
prebn_cfg = cfg.clone()
prebn_cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN
prebn_cfg.DATASETS.NAMES = tuple([cfg.TEST.PRECISE_BN.DATASET]) # set dataset name for PreciseBN
hooks.PreciseBN(
# Run at the same freq as (but before) evaluation.
model,
# Build a new data loader to not affect training
Trainer.build_train_loader(prebn_cfg),
cfg.TEST.PRECISE_BN.NUM_ITER,
).update_stats()
res = Trainer.test(cfg, model)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
main(args)