mirror of
https://github.com/JDAI-CV/fast-reid.git
synced 2025-06-03 14:50:47 +08:00
fix: 删除dataset相关的日志中令人迷惑的csv format
This commit is contained in:
parent
a080930464
commit
f8ae876c8c
@ -161,7 +161,7 @@ class ImageDataset(Dataset):
|
|||||||
headers=headers,
|
headers=headers,
|
||||||
numalign="left",
|
numalign="left",
|
||||||
)
|
)
|
||||||
logger.info(f"=> Loaded {self.__class__.__name__} in csv format: \n" + colored(table, "cyan"))
|
logger.info(f"=> Loaded {self.__class__.__name__}: \n" + colored(table, "cyan"))
|
||||||
|
|
||||||
def show_test(self):
|
def show_test(self):
|
||||||
num_query_pids, num_query_cams = self.parse_data(self.query)
|
num_query_pids, num_query_cams = self.parse_data(self.query)
|
||||||
@ -180,4 +180,4 @@ class ImageDataset(Dataset):
|
|||||||
headers=headers,
|
headers=headers,
|
||||||
numalign="left",
|
numalign="left",
|
||||||
)
|
)
|
||||||
logger.info(f"=> Loaded {self.__class__.__name__} in csv format: \n" + colored(table, "cyan"))
|
logger.info(f"=> Loaded {self.__class__.__name__}: \n" + colored(table, "cyan"))
|
||||||
|
@ -445,7 +445,7 @@ class DefaultTrainer(TrainerBase):
|
|||||||
), "Evaluator must return a dict on the main process. Got {} instead.".format(
|
), "Evaluator must return a dict on the main process. Got {} instead.".format(
|
||||||
results
|
results
|
||||||
)
|
)
|
||||||
logger.info("Evaluation results for {} in csv format:".format(dataset_name))
|
logger.info("Evaluation results for {}:".format(dataset_name))
|
||||||
results_i['dataset'] = dataset_name
|
results_i['dataset'] = dataset_name
|
||||||
print_csv_format(results_i)
|
print_csv_format(results_i)
|
||||||
|
|
||||||
|
@ -32,7 +32,7 @@ def print_csv_format(results):
|
|||||||
headers=metrics,
|
headers=metrics,
|
||||||
numalign="left",
|
numalign="left",
|
||||||
)
|
)
|
||||||
logger.info("Evaluation results in csv format: \n" + colored(table, "cyan"))
|
logger.info("Evaluation results: \n" + colored(table, "cyan"))
|
||||||
|
|
||||||
# show acc precision, recall and f1 under given threshold
|
# show acc precision, recall and f1 under given threshold
|
||||||
metrics = [k for k, v in results.items() if isinstance(v, (list, np.ndarray))]
|
metrics = [k for k, v in results.items() if isinstance(v, (list, np.ndarray))]
|
||||||
@ -47,7 +47,7 @@ def print_csv_format(results):
|
|||||||
headers=metrics,
|
headers=metrics,
|
||||||
numalign="left",
|
numalign="left",
|
||||||
)
|
)
|
||||||
logger.info("Evaluation results in csv format: \n" + colored(table, "cyan"))
|
logger.info("Evaluation results: \n" + colored(table, "cyan"))
|
||||||
|
|
||||||
|
|
||||||
def verify_results(cfg, results):
|
def verify_results(cfg, results):
|
||||||
|
@ -102,7 +102,7 @@ class Dataset(object):
|
|||||||
headers=headers,
|
headers=headers,
|
||||||
numalign="left",
|
numalign="left",
|
||||||
)
|
)
|
||||||
logger.info(f"=> Loaded {self.__class__.__name__} in csv format: \n" + colored(table, "cyan"))
|
logger.info(f"=> Loaded {self.__class__.__name__}: \n" + colored(table, "cyan"))
|
||||||
logger.info("attributes:")
|
logger.info("attributes:")
|
||||||
for label, attr in self.attr_dict.items():
|
for label, attr in self.attr_dict.items():
|
||||||
logger.info('{:3d}: {}'.format(label, attr))
|
logger.info('{:3d}: {}'.format(label, attr))
|
||||||
@ -124,4 +124,4 @@ class Dataset(object):
|
|||||||
headers=headers,
|
headers=headers,
|
||||||
numalign="left",
|
numalign="left",
|
||||||
)
|
)
|
||||||
logger.info(f"=> Loaded {self.__class__.__name__} in csv format: \n" + colored(table, "cyan"))
|
logger.info(f"=> Loaded {self.__class__.__name__}: \n" + colored(table, "cyan"))
|
||||||
|
@ -71,4 +71,4 @@ class ExcelDataset(ImageDataset):
|
|||||||
headers=headers,
|
headers=headers,
|
||||||
numalign="left",
|
numalign="left",
|
||||||
)
|
)
|
||||||
self._logger.info(f"=> Loaded {self.__class__.__name__} in csv format: \n" + colored(table, "cyan"))
|
self._logger.info(f"=> Loaded {self.__class__.__name__}: \n" + colored(table, "cyan"))
|
||||||
|
@ -111,7 +111,7 @@ class PairDataset(ImageDataset):
|
|||||||
numalign="left",
|
numalign="left",
|
||||||
)
|
)
|
||||||
|
|
||||||
self._logger.info(f"=> Loaded {self.__class__.__name__} in csv format: \n" + colored(table, "cyan"))
|
self._logger.info(f"=> Loaded {self.__class__.__name__}: \n" + colored(table, "cyan"))
|
||||||
|
|
||||||
def show_train(self):
|
def show_train(self):
|
||||||
return self.describe()
|
return self.describe()
|
||||||
|
@ -27,11 +27,12 @@ class PairTrainer(DefaultTrainer):
|
|||||||
cls._logger.info("Prepare training set")
|
cls._logger.info("Prepare training set")
|
||||||
|
|
||||||
transforms = build_transforms(cfg, is_train=True)
|
transforms = build_transforms(cfg, is_train=True)
|
||||||
|
img_root=os.path.join(_root, 'shoe_crop_all_images')
|
||||||
|
anno_path=os.path.join(_root, 'labels/1019/1019_clean_train.json')
|
||||||
|
|
||||||
datasets = []
|
datasets = []
|
||||||
for d in cfg.DATASETS.NAMES:
|
for d in cfg.DATASETS.NAMES:
|
||||||
dataset = DATASET_REGISTRY.get(d)(img_root=os.path.join(_root, 'shoe_crop_all_images'),
|
dataset = DATASET_REGISTRY.get(d)(img_root=img_root, anno_path=anno_path, transform=transforms, mode='train')
|
||||||
anno_path=os.path.join(_root, 'labels/1019/1019_clean_train.json'),
|
|
||||||
transform=transforms, mode='train')
|
|
||||||
if comm.is_main_process():
|
if comm.is_main_process():
|
||||||
dataset.show_train()
|
dataset.show_train()
|
||||||
datasets.append(dataset)
|
datasets.append(dataset)
|
||||||
@ -42,6 +43,8 @@ class PairTrainer(DefaultTrainer):
|
|||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def build_test_loader(cls, cfg, dataset_name):
|
def build_test_loader(cls, cfg, dataset_name):
|
||||||
|
cls._logger.info("Prepare {} set".format('test' if cfg.eval_only else 'validation'))
|
||||||
|
|
||||||
transforms = build_transforms(cfg, is_train=False)
|
transforms = build_transforms(cfg, is_train=False)
|
||||||
if dataset_name == 'PairDataset':
|
if dataset_name == 'PairDataset':
|
||||||
img_root = os.path.join(_root, 'shoe_crop_all_images')
|
img_root = os.path.join(_root, 'shoe_crop_all_images')
|
||||||
@ -75,8 +78,7 @@ class PairTrainer(DefaultTrainer):
|
|||||||
test_set = DATASET_REGISTRY.get(dataset_name)(img_root=img_root_0908, anno_path=val_csv_0908, transform=transforms)
|
test_set = DATASET_REGISTRY.get(dataset_name)(img_root=img_root_0908, anno_path=val_csv_0908, transform=transforms)
|
||||||
test_set.show_test()
|
test_set.show_test()
|
||||||
else:
|
else:
|
||||||
cls._logger.error("Undefined Dataset!!!")
|
raise ValueError("Undefined Dataset!!!")
|
||||||
exit(-1)
|
|
||||||
|
|
||||||
data_loader, _ = build_reid_test_loader(cfg, test_set=test_set)
|
data_loader, _ = build_reid_test_loader(cfg, test_set=test_set)
|
||||||
return data_loader
|
return data_loader
|
||||||
|
Loading…
x
Reference in New Issue
Block a user