liaoxingyu
56a1ab4a5d
update fast global avgpool
...
Summary: update fast pool according to https://arxiv.org/pdf/2003.13630.pdf
2020-06-12 16:34:03 +08:00
liaoxingyu
cbdc01a1c3
update pairwise circle loss
...
Summary: add param of pairwise circle loss to config, and update pairwise circle loss version
2020-06-10 19:07:29 +08:00
liaoxingyu
84c733fa85
fix: remove prefetcher, put normalizer in model
...
1. remove messy data prefetcher which will cause confusion
2. put normliazer in model to accelerate training via GPU computing
2020-05-25 23:39:11 +08:00
liaoxingyu
fd90555e19
feat: add multi-dataset joint training
...
new feature that can support joint training, and find some bugs in funtion combine_all of datasets/bases.py that assume person id in dataset has been relabeld from 0 to num_class.
Another bug appears in msmt17 which trainset and testset person id both begin from 0, and we should change testset id from num_class of trainset.
2020-05-18 20:06:04 +08:00
liaoxingyu
bf18479541
fix: revise syncBN bug
2020-05-14 14:52:37 +08:00
liaoxingyu
5ae3d4fecf
feat: add aqe support in test phase
...
query expansion will combine the retrived topk nearest neighbors with the original query feature,
it will enhance mAP by a large margin.feat:
2020-05-13 16:27:22 +08:00
liaoxingyu
320010f2ae
feat: support re-rank in test phase
2020-05-13 11:47:52 +08:00
liaoxingyu
0b15ac4e03
feat(hooks&optim): update stochastic weight averging hooks
...
Update swa method which will do after regular training if you
set this option enabled.
2020-05-08 12:20:04 +08:00
liaoxingyu
948af64fd1
feat: add swa algorithm
...
Add swa and related config options,
if it is enabled, model will do swa after regular training
2020-05-06 10:17:44 +08:00
liaoxingyu
a2dcd7b4ab
feat(layers/norm): add ghost batchnorm
...
add a get_norm fucntion to easily change normalization between batchnorm, ghost bn and group bn
2020-05-01 09:02:46 +08:00
liaoxingyu
a6bd0371e2
feat($data): add autoaugment
...
add auto augmentation support with ImageNet policy and CIFAR10 policy.
modify codes in transforms and config for adapting to this augmentation.
2020-04-27 11:41:12 +08:00
liaoxingyu
3984f0c91d
refactor($modeling/meta): refactor heads output
...
without intermediate variables generated by reid heads, make it more flexible
2020-04-24 12:16:18 +08:00
liaoxingyu
95a3c62ad2
refactor(fastreid)
...
refactor architecture
2020-04-20 10:59:29 +08:00
liaoxingyu
9684500a57
chagne arch
...
1. change dataset show to trainset show and testset show seperately
2. add cls layer to easily plug in circle loss and arcface
2020-04-19 12:54:01 +08:00
liaoxingyu
be9faa5605
update focal loss
...
update dataset info display
update seperate lr
update adaptive label smooth regularization
2020-04-17 13:46:10 +08:00
liaoxingyu
4d2fa28dbb
update freeze layer
...
update preciseBN
update circle loss with metric learning and cross entropy loss form
update loss call methods
2020-04-06 23:34:27 +08:00
liaoxingyu
6a8961ce48
1. upload circle loss and arcface
...
2. finish freeze training
3. update augmix data augmentation
2020-04-05 23:54:26 +08:00
liaoxingyu
eacee874aa
fix merge
2020-03-25 11:06:39 +08:00
liaoxingyu
23bedfce12
update version0.2 code
2020-03-25 10:58:26 +08:00
L1aoXingyu
12957f66aa
Change architecture:
...
1. delete redundant preprocess
2. add data prefetcher to accelerate data loading
3. fix minor bug of triplet sampler when only one image for one id
2020-02-18 21:01:23 +08:00
L1aoXingyu
327d74ffbb
Update strong baseline result
...
Change data sampler
2020-02-13 00:19:15 +08:00
L1aoXingyu
a2f69d0537
Update StrongBaseline results for market1501 and dukemtmc
2020-02-11 22:38:40 +08:00
L1aoXingyu
8a9c0ccfad
Finish first version for fastreid
2020-02-10 22:13:04 +08:00
L1aoXingyu
db6ed12b14
Update sampler code
2020-02-10 07:38:56 +08:00
liaoxingyu
71950d2c09
1. Fix evaluation code
...
2. Finish multi-dataset evaluation
3. Decouple image preprocess and output postprocess with model forward for DataParallel training
4. Finish build backbone registry
5. Fix dataset sampler
2020-01-21 20:24:26 +08:00
liaoxingyu
b761b656f3
Finish basic training loop and evaluation results
2020-01-20 21:33:37 +08:00