129 Commits

Author SHA1 Message Date
liaoxingyu
a6bd0371e2 feat($data): add autoaugment
add auto augmentation support with ImageNet policy and CIFAR10 policy.
modify codes in transforms and config for adapting to this augmentation.
2020-04-27 11:41:12 +08:00
liaoxingyu
8abd3bab03 feat($layers): add new act func
add mish, gelu supported
2020-04-24 12:17:00 +08:00
liaoxingyu
3984f0c91d refactor($modeling/meta): refactor heads output
without intermediate variables generated by reid heads, make it more flexible
2020-04-24 12:16:18 +08:00
liaoxingyu
e3ae03cc58 feat($modeling/backbones): add new backbones
add osnet, resnext and resnest backbone supported
2020-04-24 12:14:56 +08:00
liaoxingyu
b098b194ba refactor($modeling/meta_arch): remove bdb_network 2020-04-21 11:44:29 +08:00
liaoxingyu
6c9af664dc refactor($modeling/meta_arch): remove useless parts
remove useless meta_archs and backbones
2020-04-21 11:42:14 +08:00
liaoxingyu
bb50b6c5a7 docs($projects): update agw readme 2020-04-21 11:35:54 +08:00
liaoxingyu
95a3c62ad2 refactor(fastreid)
refactor architecture
2020-04-20 10:59:29 +08:00
liaoxingyu
9684500a57 chagne arch
1. change dataset show to trainset show and testset show seperately
2. add cls layer to easily plug in circle loss and arcface
2020-04-19 12:54:01 +08:00
liaoxingyu
be9faa5605 update focal loss
update dataset info display
update seperate lr
update adaptive label smooth regularization
2020-04-17 13:46:10 +08:00
liaoxingyu
9cf222e093 refactor bn_no_bias 2020-04-08 21:04:09 +08:00
liaoxingyu
4d2fa28dbb update freeze layer
update preciseBN
update circle loss with metric learning and cross entropy loss form
update loss call methods
2020-04-06 23:34:27 +08:00
liaoxingyu
6a8961ce48 1. upload circle loss and arcface
2. finish freeze training
3. update augmix data augmentation
2020-04-05 23:54:26 +08:00
liaoxingyu
c6e0176c53 Upload demo.py and example 2020-04-03 15:07:27 +08:00
liaoxingyu
eacee874aa fix merge 2020-03-25 11:06:39 +08:00
liaoxingyu
91dc9bc71f Merge branch 'master' of github.com:L1aoXingyu/fast-reid
 Conflicts:
	fastreid/config/defaults.py
	fastreid/layers/gem_pool.py
	fastreid/modeling/backbones/resnet.py
	fastreid/modeling/heads/__init__.py
	fastreid/modeling/heads/build.py
	fastreid/modeling/losses/build.py
	fastreid/modeling/meta_arch/__init__.py
	fastreid/modeling/meta_arch/abd_network.py
	fastreid/modeling/meta_arch/baseline.py
	fastreid/modeling/meta_arch/bdb_network.py
	fastreid/modeling/meta_arch/mf_network.py
	projects/StrongBaseline/configs/Base-Strongbaseline.yml
	projects/StrongBaseline/configs/baseline_dukemtmc.yml
	projects/StrongBaseline/train_net.py
2020-03-25 11:05:28 +08:00
liaoxingyu
23bedfce12 update version0.2 code 2020-03-25 10:58:26 +08:00
L1aoXingyu
b1058118ca update BDB-net code
update MF-net code
2020-03-19 12:23:41 +08:00
L1aoXingyu
acf363c181 1. Change loss function as a build-in attributes of heads
2. Update agw and bagtricks result
2020-03-16 15:23:09 +08:00
L1aoXingyu
bab602dfd2 Fix minor bug in build criterion, it will replace by multiple call
Refactor resnet pretrain
2020-02-28 21:20:41 +08:00
L1aoXingyu
b020c7f0ae Fix data prefetcher minor bug 2020-02-27 12:16:57 +08:00
L1aoXingyu
12957f66aa Change architecture:
1. delete redundant preprocess
2. add data prefetcher to accelerate data loading
3. fix minor bug of triplet sampler when only one image for one id
2020-02-18 21:01:23 +08:00
L1aoXingyu
e01d9b241f Update AGW baseline result 2020-02-13 20:37:08 +08:00
L1aoXingyu
327d74ffbb Update strong baseline result
Change data sampler
2020-02-13 00:19:15 +08:00
L1aoXingyu
a2f69d0537 Update StrongBaseline results for market1501 and dukemtmc 2020-02-11 22:38:40 +08:00
L1aoXingyu
8a9c0ccfad Finish first version for fastreid 2020-02-10 22:13:04 +08:00
L1aoXingyu
db6ed12b14 Update sampler code 2020-02-10 07:38:56 +08:00
liaoxingyu
71950d2c09 1. Fix evaluation code
2. Finish multi-dataset evaluation
3. Decouple image preprocess and output postprocess with model forward for DataParallel training
4. Finish build backbone registry
5. Fix dataset sampler
2020-01-21 20:24:26 +08:00
liaoxingyu
b761b656f3 Finish basic training loop and evaluation results 2020-01-20 21:33:37 +08:00