# FastReID Model Zoo and Baselines ## Introduction This file documents collection of baselines trained with fastreid. All numbers were obtained with 1 NVIDIA V100 GPU. The software in use were PyTorch 1.6, CUDA 10.1. In addition to these official baseline models, you can find more models in [projects/](https://github.com/JDAI-CV/fast-reid/tree/master/projects). ### How to Read the Tables - The "Name" column contains a link to the config file. Running `tools/train_net.py` with this config file and 1 GPU will reproduce the model. ### Common Settings for all Person reid models **BoT**: [Bag of Tricks and A Strong Baseline for Deep Person Re-identification](http://openaccess.thecvf.com/content_CVPRW_2019/papers/TRMTMCT/Luo_Bag_of_Tricks_and_a_Strong_Baseline_for_Deep_Person_CVPRW_2019_paper.pdf). CVPRW2019, Oral. **AGW**: [ReID-Survey with a Powerful AGW Baseline](https://github.com/mangye16/ReID-Survey). **MGN**: [Learning Discriminative Features with Multiple Granularities for Person Re-Identification](https://arxiv.org/abs/1804.01438v1) **SBS**: stronger baseline on top of BoT: Bag of Freebies(BoF): 1. Circle loss 2. Freeze backbone training 3. Cutout data augmentation & Auto Augmentation 4. Cosine annealing learning rate decay 5. Soft margin triplet loss Bag of Specials(BoS): 1. Non-local block 2. GeM pooling ### Market1501 Baselines **BoT**: | Method | Pretrained | Rank@1 | mAP | mINP | download | | :---: | :---: | :---: |:---: | :---: | :---: | | [BoT(R50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/bagtricks_R50.yml) | ImageNet | 94.4% | 86.1% | 59.4% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/market_bot_R50.pth) | | [BoT(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/bagtricks_R50-ibn.yml) | ImageNet | 94.9% | 87.6% | 64.1% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/market_bot_R50-ibn.pth) | | [BoT(S50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/bagtricks_S50.yml) | ImageNet | 95.2% | 88.7% | 66.9% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/market_bot_S50.pth) | | [BoT(R101-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/bagtricks_R101-ibn.yml) | ImageNet| 95.4% | 88.9% | 67.4% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/market_bot_R101-ibn.pth) | **AGW**: | Method | Pretrained | Rank@1 | mAP | mINP | download | | :---: | :---: | :---: |:---: | :---: |:---: | | [AGW(R50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/AGW_R50.yml) | ImageNet | 95.3% | 88.2% | 66.3% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/market_agw_R50.pth) | | [AGW(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/AGW_R50-ibn.yml) | ImageNet | 95.1% | 88.7% | 67.1% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/market_agw_R50-ibn.pth) | | [AGW(S50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/AGW_S50.yml) | ImageNet | 95.3% | 89.3% | 68.5% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/market_agw_S50.pth) | | [AGW(R101-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/AGW_R101-ibn.yml) | ImageNet | 95.5% | 89.5% | 69.5% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/market_agw_R101-ibn.pth) | **SBS**: | Method | Pretrained | Rank@1 | mAP | mINP | download | | :---: | :---: | :---: |:---: | :---: |:---:| | [SBS(R50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/sbs_R50.yml) | ImageNet | 95.4% | 88.2% | 64.8% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/market_sbs_R50.pth) | | [SBS(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/sbs_R50-ibn.yml) | ImageNet | 95.7% | 89.3% | 67.5% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/market_sbs_R50-ibn.pth) | | [SBS(S50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/sbs_S50.yml) | ImageNet | 95.8% | 89.4% | 67.6% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/market_sbs_S50.pth) | | [SBS(R101-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/sbs_R101-ibn.yml) | ImageNet | 96.3% | 90.3% | 70.0% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/market_sbs_R101-ibn.pth) | **MGN**: | Method | Pretrained | Rank@1 | mAP | mINP | download | | :---: | :---: | :---: |:---: | :---: | :---:| | [SBS(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/mgn_R50-ibn.yml) | ImageNet | 95.8% | 89.8% | 67.7% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/market_mgn_R50-ibn.pth) | ### DukeMTMC Baseline **BoT**: | Method | Pretrained | Rank@1 | mAP | mINP | download | | :---: | :---: | :---: |:---: | :---: | :---: | | [BoT(R50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/bagtricks_R50.yml) | ImageNet | 87.2% | 77.0% | 42.1% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/duke_bot_R50.pth) | | [BoT(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/bagtricks_R50-ibn.yml) | ImageNet | 89.3% | 79.6% | 45.2% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/duke_bot_R50-ibn.pth) | | [BoT(S50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/bagtricks_S50.yml) | ImageNet | 90.0% | 80.13% | 45.8% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/duke_bot_S50.pth) | | [BoT(R101-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/bagtricks_R101-ibn.yml) | ImageNet| 91.2% | 81.2% | 47.5% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/duke_bot_R101-ibn.pth) | **AGW**: | Method | Pretrained | Rank@1 | mAP | mINP | download | | :---: | :---: | :---: |:---: | :---: | :---:| | [AGW(R50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/AGW_R50.yml) | ImageNet | 89.0% | 79.9% | 46.1% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/duke_agw_R50.pth) | | [AGW(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/AGW_R50-ibn.yml) | ImageNet | 90.5% | 80.8% | 47.6% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/duke_agw_R50-ibn.pth) | | [AGW(S50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/AGW_S50.yml) | ImageNet | 90.9% | 82.4% | 49.2% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/duke_agw_S50.pth) | | [AGW(R101-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/AGW_R101-ibn.yml) | ImageNet | 91.7% | 82.3% | 50.0% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/duke_agw_R101-ibn.pth) | **SBS**: | Method | Pretrained | Rank@1 | mAP | mINP | download | | :---: | :---: | :---: |:---: | :---: | :---:| | [SBS(R50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/sbs_R50.yml) | ImageNet | 90.3% | 80.3% | 46.5% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/duke_sbs_R50.pth) | | [SBS(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/sbs_R50-ibn.yml) | ImageNet | 90.8% | 81.2% | 47.0% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/duke_sbs_R50-ibn.pth) | | [SBS(S50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/sbs_S50.yml) | ImageNet | 91.0% | 81.4% | 47.6% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/duke_sbs_S50.pth) | | [SBS(R101-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/sbs_R101-ibn.yml) | ImageNet | 91.9% | 83.6% | 51.5% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/duke_sbs_R101-ibn.pth) | **MGN**: | Method | Pretrained | Rank@1 | mAP | mINP | download | | :---: | :---: | :---: |:---: | :---: | :---:| | [SBS(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/mgn_R50-ibn.yml) | ImageNet | 91.1% | 82.0% | 46.8% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/duke_mgn_R50-ibn.pth) | ### MSMT17 Baseline **BoT**: | Method | Pretrained | Rank@1 | mAP | mINP | download | | :---: | :---: | :---: |:---: | :---: | :---:| | [BoT(R50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/bagtricks_R50.yml) | ImageNet | 74.1% | 50.2% | 10.4% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/msmt_bot_R50.pth) | | [BoT(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/bagtricks_R50-ibn.yml) | ImageNet | 77.0% | 54.4% | 12.5% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/msmt_bot_R50-ibn.pth) | | [BoT(S50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/bagtricks_S50.yml) | ImageNet | 80.8% | 59.9% | 16.3% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/msmt_bot_S50.pth) | | [BoT(R101-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/bagtricks_R101-ibn.yml) | ImageNet| 81.0% | 59.4% | 15.6% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/msmt_bot_R101-ibn.pth) | **AGW**: | Method | Pretrained | Rank@1 | mAP | mINP | download | | :---: | :---: | :---: |:---: | :---: | :---:| | [AGW(R50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/AGW_R50.yml) | ImageNet | 78.3% | 55.6% | 12.9% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/msmt_agw_R50.pth) | | [AGW(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/AGW_R50-ibn.yml) | ImageNet | 81.2% | 59.7% | 15.3% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/msmt_agw_R50-ibn.pth) | | [AGW(S50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/AGW_S50.yml) | ImageNet | 82.6% | 62.6% | 17.7% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/msmt_agw_S50.pth) | | [AGW(R101-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/AGW_R101-ibn.yml) | ImageNet | 82.0% | 61.4% | 17.3% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/msmt_agw_R101-ibn.pth) | **SBS**: | Method | Pretrained | Rank@1 | mAP | mINP | download | | :---: | :---: | :---: |:---: | :---: | :---:| | [SBS(R50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/sbs_R50.yml) | ImageNet | 81.8% | 58.4% | 13.9% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/msmt_sbs_R50.pth) | | [SBS(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/sbs_R50-ibn.yml) | ImageNet | 83.9% | 60.6% | 15.2% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/msmt_sbs_R50-ibn.pth) | | [SBS(S50)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/sbs_S50.yml) | ImageNet | 84.1% | 61.7% | 15.2% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/msmt_sbs_S50.pth) | | [SBS(R101-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/sbs_R101-ibn.yml) | ImageNet | 84.8% | 62.8% | 16.3% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/msmt_sbs_R101-ibn.pth) | **MGN**: | Method | Pretrained | Rank@1 | mAP | mINP | download | | :---: | :---: | :---: |:---: | :---: | :---:| | [SBS(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/mgn_R50-ibn.yml) | ImageNet | 85.1% | 65.4% | 18.4% | - | ### VeRi Baseline **SBS**: | Method | Pretrained | Rank@1 | mAP | mINP | download | | :---: | :---: | :---: |:---: | :---: | :---:| | [SBS(R50-ibn)](https://github.com/JDAI-CV/fast-reid/blob/master/configs/VeRi/sbs_R50-ibn.yml) | ImageNet | 97.0% | 81.9% | 46.3% | [model](https://github.com/JDAI-CV/fast-reid/releases/download/v0.1.1/veri_sbs_R50-ibn.pth) | ### VehicleID Baseline **BoT**: Test protocol: 10-fold cross-validation; trained on 4 NVIDIA P40 GPU.
Method Pretrained Testset size download
Small Medium Large
Rank@1 Rank@5 Rank@1 Rank@5 Rank@1 Rank@5
BoT(R50-ibn) ImageNet 86.6% 97.9% 82.9% 96.0% 80.6% 93.9% model
### VERI-Wild Baseline **BoT**: Test protocol: Trained on 4 NVIDIA P40 GPU.
Method Pretrained Testset size download
Small Medium Large
Rank@1 mAP mINP Rank@1 mAP mINP Rank@1 mAP mINP
BoT(R50-ibn) ImageNet 96.4% 87.7% 69.2% 95.1% 83.5% 61.2% 92.5% 77.3% 49.8% model