# encoding: utf-8 """ @author: liaoxingyu @contact: sherlockliao01@gmail.com """ from fastreid.layers import * from fastreid.utils.weight_init import weights_init_kaiming from .build import REID_HEADS_REGISTRY @REID_HEADS_REGISTRY.register() class ReductionHead(nn.Module): def __init__(self, cfg, in_feat, num_classes, pool_layer=nn.AdaptiveAvgPool2d(1)): super().__init__() reduction_dim = cfg.MODEL.HEADS.REDUCTION_DIM self.pool_layer = pool_layer self.bottleneck = nn.Sequential( nn.Conv2d(in_feat, reduction_dim, 1, 1, bias=False), get_norm(cfg.MODEL.HEADS.NORM, reduction_dim, cfg.MODEL.HEADS.NORM_SPLIT, bias_freeze=True), nn.LeakyReLU(0.1), nn.Dropout2d(0.5), ) self.bnneck = get_norm(cfg.MODEL.HEADS.NORM, reduction_dim, cfg.MODEL.HEADS.NORM_SPLIT, bias_freeze=True) self.bottleneck.apply(weights_init_kaiming) self.bnneck.apply(weights_init_kaiming) # identity classification layer if cfg.MODEL.HEADS.CLS_LAYER == 'linear': self.classifier = nn.Linear(reduction_dim, num_classes, bias=False) elif cfg.MODEL.HEADS.CLS_LAYER == 'arcface': self.classifier = Arcface(cfg, reduction_dim) elif cfg.MODEL.HEADS.CLS_LAYER == 'circle': self.classifier = Circle(cfg, reduction_dim) else: self.classifier = nn.Linear(reduction_dim, num_classes, bias=False) def forward(self, features, targets=None): """ See :class:`ReIDHeads.forward`. """ global_feat = self.pool_layer(features) global_feat = self.bottleneck(global_feat) bn_feat = self.bnneck(global_feat) bn_feat = Flatten()(bn_feat) # Evaluation if not self.training: return bn_feat # Training try: pred_class_logits = self.classifier(bn_feat) except TypeError: pred_class_logits = self.classifier(bn_feat, targets) if self.neck_feat == "before": feat = Flatten()(global_feat) elif self.neck_feat == "after": feat = bn_feat else: raise KeyError("MODEL.HEADS.NECK_FEAT value is invalid, must choose from ('after' & 'before')") return pred_class_logits, feat, targets