# encoding: utf-8 """ @author: xingyu liao @contact: sherlockliao01@gmail.com """ import torch from torch import nn from fastreid.layers import get_norm from fastreid.modeling.backbones import BACKBONE_REGISTRY def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class IBasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, bn_norm, stride=1, downsample=None, groups=1, base_width=64, dilation=1): super().__init__() if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") self.bn1 = get_norm(bn_norm, inplanes) self.conv1 = conv3x3(inplanes, planes) self.bn2 = get_norm(bn_norm, planes) self.prelu = nn.PReLU(planes) self.conv2 = conv3x3(planes, planes, stride) self.bn3 = get_norm(bn_norm, planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.bn1(x) out = self.conv1(out) out = self.bn2(out) out = self.prelu(out) out = self.conv2(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity return out class IResNet(nn.Module): fc_scale = 7 * 7 def __init__(self, block, layers, bn_norm, dropout=0, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, fp16=False): super().__init__() self.inplanes = 64 self.dilation = 1 self.fp16 = fp16 if replace_stride_with_dilation is None: replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = get_norm(bn_norm, self.inplanes) self.prelu = nn.PReLU(self.inplanes) self.layer1 = self._make_layer(block, 64, layers[0], bn_norm, stride=2) self.layer2 = self._make_layer(block, 128, layers[1], bn_norm, stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], bn_norm, stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], bn_norm, stride=2, dilate=replace_stride_with_dilation[2]) self.bn2 = get_norm(bn_norm, 512 * block.expansion) self.dropout = nn.Dropout(p=dropout, inplace=True) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.normal_(m.weight, 0, 0.1) elif m.__class__.__name__.find('Norm') != -1: nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) if zero_init_residual: for m in self.modules(): if isinstance(m, IBasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, bn_norm, stride=1, dilate=False): downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), get_norm(bn_norm, planes * block.expansion), ) layers = [] layers.append( block(self.inplanes, planes, bn_norm, stride, downsample, self.groups, self.base_width, previous_dilation)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block(self.inplanes, planes, bn_norm, groups=self.groups, base_width=self.base_width, dilation=self.dilation)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.prelu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.bn2(x) x = self.dropout(x) return x @BACKBONE_REGISTRY.register() def build_iresnet_backbone(cfg): """ Create a IResNet instance from config. Returns: ResNet: a :class:`ResNet` instance. """ # fmt: off bn_norm = cfg.MODEL.BACKBONE.NORM depth = cfg.MODEL.BACKBONE.DEPTH dropout = cfg.MODEL.BACKBONE.DROPOUT fp16 = cfg.SOLVER.AMP.ENABLED # fmt: on num_blocks_per_stage = { '18x': [2, 2, 2, 2], '34x': [3, 4, 6, 3], '50x': [3, 4, 14, 3], '100x': [3, 13, 30, 3], '200x': [6, 26, 60, 6], }[depth] model = IResNet(IBasicBlock, num_blocks_per_stage, bn_norm, dropout, fp16=fp16) return model