# encoding: utf-8 # based on: # https://github.com/zhunzhong07/person-re-ranking __all__ = ['re_ranking'] import numpy as np def re_ranking(q_g_dist, q_q_dist, g_g_dist, k1: int = 20, k2: int = 6, lambda_value: float = 0.3): original_dist = np.concatenate( [np.concatenate([q_q_dist, q_g_dist], axis=1), np.concatenate([q_g_dist.T, g_g_dist], axis=1)], axis=0) original_dist = np.power(original_dist, 2).astype(np.float32) original_dist = np.transpose(1. * original_dist / np.max(original_dist, axis=0)) V = np.zeros_like(original_dist).astype(np.float32) initial_rank = np.argsort(original_dist).astype(np.int32) query_num = q_g_dist.shape[0] gallery_num = q_g_dist.shape[0] + q_g_dist.shape[1] all_num = gallery_num for i in range(all_num): # k-reciprocal neighbors forward_k_neigh_index = initial_rank[i, :k1 + 1] backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1] fi = np.where(backward_k_neigh_index == i)[0] k_reciprocal_index = forward_k_neigh_index[fi] k_reciprocal_expansion_index = k_reciprocal_index for j in range(len(k_reciprocal_index)): candidate = k_reciprocal_index[j] candidate_forward_k_neigh_index = initial_rank[candidate, :int(np.around(k1 / 2.)) + 1] candidate_backward_k_neigh_index = initial_rank[candidate_forward_k_neigh_index, :int(np.around(k1 / 2.)) + 1] fi_candidate = np.where(candidate_backward_k_neigh_index == candidate)[0] candidate_k_reciprocal_index = candidate_forward_k_neigh_index[fi_candidate] if len(np.intersect1d(candidate_k_reciprocal_index, k_reciprocal_index)) > 2. / 3 * len( candidate_k_reciprocal_index): k_reciprocal_expansion_index = np.append(k_reciprocal_expansion_index, candidate_k_reciprocal_index) k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index) weight = np.exp(-original_dist[i, k_reciprocal_expansion_index]) V[i, k_reciprocal_expansion_index] = 1. * weight / np.sum(weight) original_dist = original_dist[:query_num, ] if k2 != 1: V_qe = np.zeros_like(V, dtype=np.float32) for i in range(all_num): V_qe[i, :] = np.mean(V[initial_rank[i, :k2], :], axis=0) V = V_qe del V_qe del initial_rank invIndex = [] for i in range(gallery_num): invIndex.append(np.where(V[:, i] != 0)[0]) jaccard_dist = np.zeros_like(original_dist, dtype=np.float32) for i in range(query_num): temp_min = np.zeros(shape=[1, gallery_num], dtype=np.float32) indNonZero = np.where(V[i, :] != 0)[0] indImages = [invIndex[ind] for ind in indNonZero] for j in range(len(indNonZero)): temp_min[0, indImages[j]] = temp_min[0, indImages[j]] + np.minimum(V[i, indNonZero[j]], V[indImages[j], indNonZero[j]]) jaccard_dist[i] = 1 - temp_min / (2. - temp_min) final_dist = jaccard_dist * (1 - lambda_value) + original_dist * lambda_value del original_dist, V, jaccard_dist final_dist = final_dist[:query_num, query_num:] return final_dist