# encoding: utf-8 """ @author: xingyu liao @contact: sherlockliao01@gmail.com """ import os from glob import glob from fastreid.data.datasets import DATASET_REGISTRY from fastreid.data.datasets.bases import ImageDataset __all__ = ['SAIVT', ] @DATASET_REGISTRY.register() class SAIVT(ImageDataset): """SAIVT """ dataset_dir = "SAIVT-SoftBio" dataset_name = "saivt" def __init__(self, root='datasets', **kwargs): self.root = root self.train_path = os.path.join(self.root, self.dataset_dir) required_files = [self.train_path] self.check_before_run(required_files) train = self.process_train(self.train_path) super().__init__(train, [], [], **kwargs) def process_train(self, train_path): data = [] pid_path = os.path.join(train_path, "cropped_images") pid_list = os.listdir(pid_path) for pid_name in pid_list: pid = self.dataset_name + '_' + pid_name img_list = glob(os.path.join(pid_path, pid_name, "*.jpeg")) for img_path in img_list: img_name = os.path.basename(img_path) camid = self.dataset_name + '_' + img_name.split('-')[2] data.append([img_path, pid, camid]) return data