# encoding: utf-8 """ @author: xingyu liao @contact: sherlockliao01@gmail.com """ import os from fastreid.data.datasets import DATASET_REGISTRY from fastreid.data.datasets.bases import ImageDataset __all__ = ['Shinpuhkan', ] @DATASET_REGISTRY.register() class Shinpuhkan(ImageDataset): """shinpuhkan """ dataset_dir = "shinpuhkan" dataset_name = 'shinpuhkan' def __init__(self, root='datasets', **kwargs): self.root = root self.train_path = os.path.join(self.root, self.dataset_dir) required_files = [self.train_path] self.check_before_run(required_files) train = self.process_train(self.train_path) super().__init__(train, [], [], **kwargs) def process_train(self, train_path): data = [] for root, dirs, files in os.walk(train_path): img_names = list(filter(lambda x: x.endswith(".jpg"), files)) # fmt: off if len(img_names) == 0: continue # fmt: on for img_name in img_names: img_path = os.path.join(root, img_name) split_path = img_name.split('_') pid = self.dataset_name + "_" + split_path[0] camid = self.dataset_name + "_" + split_path[2] data.append((img_path, pid, camid)) return data