""" Author: Guan'an Wang Contact: guan.wang0706@gmail.com """ import torch import torch.nn as nn from .blocks import ShuffleV2Block class ShuffleNetV2(nn.Module): """ Reference: https://github.com/megvii-model/ShuffleNet-Series/tree/master/ShuffleNetV2 """ def __init__(self, input_size=224, n_class=1000, model_size='1.5x'): super(ShuffleNetV2, self).__init__() print('model size is ', model_size) self.stage_repeats = [4, 8, 4] self.model_size = model_size if model_size == '0.5x': self.stage_out_channels = [-1, 24, 48, 96, 192, 1024] elif model_size == '1.0x': self.stage_out_channels = [-1, 24, 116, 232, 464, 1024] elif model_size == '1.5x': self.stage_out_channels = [-1, 24, 176, 352, 704, 1024] elif model_size == '2.0x': self.stage_out_channels = [-1, 24, 244, 488, 976, 2048] else: raise NotImplementedError # building first layer input_channel = self.stage_out_channels[1] self.first_conv = nn.Sequential( nn.Conv2d(3, input_channel, 3, 2, 1, bias=False), nn.BatchNorm2d(input_channel), nn.ReLU(inplace=True), ) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.features = [] for idxstage in range(len(self.stage_repeats)): numrepeat = self.stage_repeats[idxstage] output_channel = self.stage_out_channels[idxstage + 2] for i in range(numrepeat): if i == 0: self.features.append(ShuffleV2Block(input_channel, output_channel, mid_channels=output_channel // 2, ksize=3, stride=2)) else: self.features.append(ShuffleV2Block(input_channel // 2, output_channel, mid_channels=output_channel // 2, ksize=3, stride=1)) input_channel = output_channel self.features = nn.Sequential(*self.features) self.conv_last = nn.Sequential( nn.Conv2d(input_channel, self.stage_out_channels[-1], 1, 1, 0, bias=False), nn.BatchNorm2d(self.stage_out_channels[-1]), nn.ReLU(inplace=True) ) self.globalpool = nn.AvgPool2d(7) if self.model_size == '2.0x': self.dropout = nn.Dropout(0.2) self.classifier = nn.Sequential(nn.Linear(self.stage_out_channels[-1], n_class, bias=False)) self._initialize_weights() def forward(self, x): x = self.first_conv(x) x = self.maxpool(x) x = self.features(x) x = self.conv_last(x) x = self.globalpool(x) if self.model_size == '2.0x': x = self.dropout(x) x = x.contiguous().view(-1, self.stage_out_channels[-1]) x = self.classifier(x) return x def _initialize_weights(self): for name, m in self.named_modules(): if isinstance(m, nn.Conv2d): if 'first' in name: nn.init.normal_(m.weight, 0, 0.01) else: nn.init.normal_(m.weight, 0, 1.0 / m.weight.shape[1]) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0.0001) nn.init.constant_(m.running_mean, 0) elif isinstance(m, nn.BatchNorm1d): nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0.0001) nn.init.constant_(m.running_mean, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.constant_(m.bias, 0) if __name__ == "__main__": model = ShuffleNetV2() # print(model) test_data = torch.rand(5, 3, 224, 224) test_outputs = model(test_data) print(test_outputs.size())