# encoding: utf-8 """ @author: liaoxingyu @contact: sherlockliao01@gmail.com """ __all__ = ['ToTensor', 'RandomPatch', 'AugMix', ] import math import random from collections import deque import numpy as np from PIL import Image from .functional import to_tensor, augmentations class ToTensor(object): """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 255.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8 In the other cases, tensors are returned without scaling. """ def __call__(self, pic): """ Args: pic (PIL Image or numpy.ndarray): Image to be converted to tensor. Returns: Tensor: Converted image. """ return to_tensor(pic) def __repr__(self): return self.__class__.__name__ + '()' class RandomPatch(object): """Random patch data augmentation. There is a patch pool that stores randomly extracted pathces from person images. For each input image, RandomPatch 1) extracts a random patch and stores the patch in the patch pool; 2) randomly selects a patch from the patch pool and pastes it on the input (at random position) to simulate occlusion. Reference: - Zhou et al. Omni-Scale Feature Learning for Person Re-Identification. ICCV, 2019. - Zhou et al. Learning Generalisable Omni-Scale Representations for Person Re-Identification. arXiv preprint, 2019. """ def __init__(self, prob_happen=0.5, pool_capacity=50000, min_sample_size=100, patch_min_area=0.01, patch_max_area=0.5, patch_min_ratio=0.1, prob_rotate=0.5, prob_flip_leftright=0.5, ): self.prob_happen = prob_happen self.patch_min_area = patch_min_area self.patch_max_area = patch_max_area self.patch_min_ratio = patch_min_ratio self.prob_rotate = prob_rotate self.prob_flip_leftright = prob_flip_leftright self.patchpool = deque(maxlen=pool_capacity) self.min_sample_size = min_sample_size def generate_wh(self, W, H): area = W * H for attempt in range(100): target_area = random.uniform(self.patch_min_area, self.patch_max_area) * area aspect_ratio = random.uniform(self.patch_min_ratio, 1. / self.patch_min_ratio) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < W and h < H: return w, h return None, None def transform_patch(self, patch): if random.uniform(0, 1) > self.prob_flip_leftright: patch = patch.transpose(Image.FLIP_LEFT_RIGHT) if random.uniform(0, 1) > self.prob_rotate: patch = patch.rotate(random.randint(-10, 10)) return patch def __call__(self, img): if isinstance(img, np.ndarray): img = Image.fromarray(img.astype(np.uint8)) W, H = img.size # original image size # collect new patch w, h = self.generate_wh(W, H) if w is not None and h is not None: x1 = random.randint(0, W - w) y1 = random.randint(0, H - h) new_patch = img.crop((x1, y1, x1 + w, y1 + h)) self.patchpool.append(new_patch) if len(self.patchpool) < self.min_sample_size: return img if random.uniform(0, 1) > self.prob_happen: return img # paste a randomly selected patch on a random position patch = random.sample(self.patchpool, 1)[0] patchW, patchH = patch.size x1 = random.randint(0, W - patchW) y1 = random.randint(0, H - patchH) patch = self.transform_patch(patch) img.paste(patch, (x1, y1)) return img class AugMix(object): """ Perform AugMix augmentation and compute mixture. Args: prob: Probability of taking augmix aug_prob_coeff: Probability distribution coefficients. mixture_width: Number of augmentation chains to mix per augmented example. mixture_depth: Depth of augmentation chains. -1 denotes stochastic depth in [1, 3]' aug_severity: Severity of underlying augmentation operators (between 1 to 10). """ def __init__(self, prob=0.5, aug_prob_coeff=0.1, mixture_width=3, mixture_depth=1, aug_severity=1): self.prob = prob self.aug_prob_coeff = aug_prob_coeff self.mixture_width = mixture_width self.mixture_depth = mixture_depth self.aug_severity = aug_severity self.augmentations = augmentations def __call__(self, image): """Perform AugMix augmentations and compute mixture. Returns: mixed: Augmented and mixed image. """ if random.random() > self.prob: return np.asarray(image) ws = np.float32( np.random.dirichlet([self.aug_prob_coeff] * self.mixture_width)) m = np.float32(np.random.beta(self.aug_prob_coeff, self.aug_prob_coeff)) # image = np.asarray(image, dtype=np.float32).copy() # mix = np.zeros_like(image) mix = np.zeros([image.size[1], image.size[0], 3]) # h, w = image.shape[0], image.shape[1] for i in range(self.mixture_width): image_aug = image.copy() # image_aug = Image.fromarray(image.copy().astype(np.uint8)) depth = self.mixture_depth if self.mixture_depth > 0 else np.random.randint(1, 4) for _ in range(depth): op = np.random.choice(self.augmentations) image_aug = op(image_aug, self.aug_severity) mix += ws[i] * np.asarray(image_aug) mixed = (1 - m) * image + m * mix return mixed.astype(np.uint8)