# encoding: utf-8 """ @author: xingyu liao @contact: sherlockliao01@gmail.com """ # based on: # https://github.com/XingangPan/IBN-Net/blob/master/models/imagenet/resnext_ibn_a.py import logging import math import torch import torch.nn as nn from fastreid.layers import * from fastreid.utils import comm from fastreid.utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message from .build import BACKBONE_REGISTRY logger = logging.getLogger(__name__) model_urls = { 'ibn_101x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnext101_ibn_a-6ace051d.pth', } class Bottleneck(nn.Module): """ RexNeXt bottleneck type C """ expansion = 4 def __init__(self, inplanes, planes, bn_norm, with_ibn, baseWidth, cardinality, stride=1, downsample=None): """ Constructor Args: inplanes: input channel dimensionality planes: output channel dimensionality baseWidth: base width. cardinality: num of convolution groups. stride: conv stride. Replaces pooling layer. """ super(Bottleneck, self).__init__() D = int(math.floor(planes * (baseWidth / 64))) C = cardinality self.conv1 = nn.Conv2d(inplanes, D * C, kernel_size=1, stride=1, padding=0, bias=False) if with_ibn: self.bn1 = IBN(D * C, bn_norm) else: self.bn1 = get_norm(bn_norm, D * C) self.conv2 = nn.Conv2d(D * C, D * C, kernel_size=3, stride=stride, padding=1, groups=C, bias=False) self.bn2 = get_norm(bn_norm, D * C) self.conv3 = nn.Conv2d(D * C, planes * 4, kernel_size=1, stride=1, padding=0, bias=False) self.bn3 = get_norm(bn_norm, planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNeXt(nn.Module): """ ResNext optimized for the ImageNet dataset, as specified in https://arxiv.org/pdf/1611.05431.pdf """ def __init__(self, last_stride, bn_norm, with_ibn, with_nl, block, layers, non_layers, baseWidth=4, cardinality=32): """ Constructor Args: baseWidth: baseWidth for ResNeXt. cardinality: number of convolution groups. layers: config of layers, e.g., [3, 4, 6, 3] """ super(ResNeXt, self).__init__() self.cardinality = cardinality self.baseWidth = baseWidth self.inplanes = 64 self.output_size = 64 self.conv1 = nn.Conv2d(3, 64, 7, 2, 3, bias=False) self.bn1 = get_norm(bn_norm, 64) self.relu = nn.ReLU(inplace=True) self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], 1, bn_norm, with_ibn=with_ibn) self.layer2 = self._make_layer(block, 128, layers[1], 2, bn_norm, with_ibn=with_ibn) self.layer3 = self._make_layer(block, 256, layers[2], 2, bn_norm, with_ibn=with_ibn) self.layer4 = self._make_layer(block, 512, layers[3], last_stride, bn_norm, with_ibn=with_ibn) self.random_init() # fmt: off if with_nl: self._build_nonlocal(layers, non_layers, bn_norm) else: self.NL_1_idx = self.NL_2_idx = self.NL_3_idx = self.NL_4_idx = [] # fmt: on def _make_layer(self, block, planes, blocks, stride=1, bn_norm='BN', with_ibn=False): """ Stack n bottleneck modules where n is inferred from the depth of the network. Args: block: block type used to construct ResNext planes: number of output channels (need to multiply by block.expansion) blocks: number of blocks to be built stride: factor to reduce the spatial dimensionality in the first bottleneck of the block. Returns: a Module consisting of n sequential bottlenecks. """ downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), get_norm(bn_norm, planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, bn_norm, with_ibn, self.baseWidth, self.cardinality, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append( block(self.inplanes, planes, bn_norm, with_ibn, self.baseWidth, self.cardinality, 1, None)) return nn.Sequential(*layers) def _build_nonlocal(self, layers, non_layers, bn_norm): self.NL_1 = nn.ModuleList( [Non_local(256, bn_norm) for _ in range(non_layers[0])]) self.NL_1_idx = sorted([layers[0] - (i + 1) for i in range(non_layers[0])]) self.NL_2 = nn.ModuleList( [Non_local(512, bn_norm) for _ in range(non_layers[1])]) self.NL_2_idx = sorted([layers[1] - (i + 1) for i in range(non_layers[1])]) self.NL_3 = nn.ModuleList( [Non_local(1024, bn_norm) for _ in range(non_layers[2])]) self.NL_3_idx = sorted([layers[2] - (i + 1) for i in range(non_layers[2])]) self.NL_4 = nn.ModuleList( [Non_local(2048, bn_norm) for _ in range(non_layers[3])]) self.NL_4_idx = sorted([layers[3] - (i + 1) for i in range(non_layers[3])]) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool1(x) NL1_counter = 0 if len(self.NL_1_idx) == 0: self.NL_1_idx = [-1] for i in range(len(self.layer1)): x = self.layer1[i](x) if i == self.NL_1_idx[NL1_counter]: _, C, H, W = x.shape x = self.NL_1[NL1_counter](x) NL1_counter += 1 # Layer 2 NL2_counter = 0 if len(self.NL_2_idx) == 0: self.NL_2_idx = [-1] for i in range(len(self.layer2)): x = self.layer2[i](x) if i == self.NL_2_idx[NL2_counter]: _, C, H, W = x.shape x = self.NL_2[NL2_counter](x) NL2_counter += 1 # Layer 3 NL3_counter = 0 if len(self.NL_3_idx) == 0: self.NL_3_idx = [-1] for i in range(len(self.layer3)): x = self.layer3[i](x) if i == self.NL_3_idx[NL3_counter]: _, C, H, W = x.shape x = self.NL_3[NL3_counter](x) NL3_counter += 1 # Layer 4 NL4_counter = 0 if len(self.NL_4_idx) == 0: self.NL_4_idx = [-1] for i in range(len(self.layer4)): x = self.layer4[i](x) if i == self.NL_4_idx[NL4_counter]: _, C, H, W = x.shape x = self.NL_4[NL4_counter](x) NL4_counter += 1 return x def random_init(self): self.conv1.weight.data.normal_(0, math.sqrt(2. / (7 * 7 * 64))) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.InstanceNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def init_pretrained_weights(key): """Initializes model with pretrained weights. Layers that don't match with pretrained layers in name or size are kept unchanged. """ import os import errno import gdown def _get_torch_home(): ENV_TORCH_HOME = 'TORCH_HOME' ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME' DEFAULT_CACHE_DIR = '~/.cache' torch_home = os.path.expanduser( os.getenv( ENV_TORCH_HOME, os.path.join( os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'torch' ) ) ) return torch_home torch_home = _get_torch_home() model_dir = os.path.join(torch_home, 'checkpoints') try: os.makedirs(model_dir) except OSError as e: if e.errno == errno.EEXIST: # Directory already exists, ignore. pass else: # Unexpected OSError, re-raise. raise filename = model_urls[key].split('/')[-1] cached_file = os.path.join(model_dir, filename) if not os.path.exists(cached_file): if comm.is_main_process(): gdown.download(model_urls[key], cached_file, quiet=False) comm.synchronize() logger.info(f"Loading pretrained model from {cached_file}") state_dict = torch.load(cached_file, map_location=torch.device('cpu')) return state_dict @BACKBONE_REGISTRY.register() def build_resnext_backbone(cfg): """ Create a ResNeXt instance from config. Returns: ResNeXt: a :class:`ResNeXt` instance. """ # fmt: off pretrain = cfg.MODEL.BACKBONE.PRETRAIN pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH last_stride = cfg.MODEL.BACKBONE.LAST_STRIDE bn_norm = cfg.MODEL.BACKBONE.NORM with_ibn = cfg.MODEL.BACKBONE.WITH_IBN with_nl = cfg.MODEL.BACKBONE.WITH_NL depth = cfg.MODEL.BACKBONE.DEPTH # fmt: on num_blocks_per_stage = { '50x': [3, 4, 6, 3], '101x': [3, 4, 23, 3], '152x': [3, 8, 36, 3], }[depth] nl_layers_per_stage = { '50x': [0, 2, 3, 0], '101x': [0, 2, 3, 0]}[depth] model = ResNeXt(last_stride, bn_norm, with_ibn, with_nl, Bottleneck, num_blocks_per_stage, nl_layers_per_stage) if pretrain: if pretrain_path: try: state_dict = torch.load(pretrain_path, map_location=torch.device('cpu'))['model'] # Remove module.encoder in name new_state_dict = {} for k in state_dict: new_k = '.'.join(k.split('.')[2:]) if new_k in model.state_dict() and (model.state_dict()[new_k].shape == state_dict[k].shape): new_state_dict[new_k] = state_dict[k] state_dict = new_state_dict logger.info(f"Loading pretrained model from {pretrain_path}") except FileNotFoundError as e: logger.info(f'{pretrain_path} is not found! Please check this path.') raise e except KeyError as e: logger.info("State dict keys error! Please check the state dict.") raise e else: key = depth if with_ibn: key = 'ibn_' + key state_dict = init_pretrained_weights(key) incompatible = model.load_state_dict(state_dict, strict=False) if incompatible.missing_keys: logger.info( get_missing_parameters_message(incompatible.missing_keys) ) if incompatible.unexpected_keys: logger.info( get_unexpected_parameters_message(incompatible.unexpected_keys) ) return model