""" Creates a MobileNetV2 Model as defined in: Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks arXiv preprint arXiv:1801.04381. import from https://github.com/tonylins/pytorch-mobilenet-v2 """ import logging import math import torch import torch.nn as nn from fastreid.layers import get_norm from fastreid.utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message from .build import BACKBONE_REGISTRY logger = logging.getLogger(__name__) def _make_divisible(v, divisor, min_value=None): """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py :param v: :param divisor: :param min_value: :return: """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v def conv_3x3_bn(inp, oup, stride, bn_norm): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), get_norm(bn_norm, oup), nn.ReLU6(inplace=True) ) def conv_1x1_bn(inp, oup, bn_norm): return nn.Sequential( nn.Conv2d(inp, oup, 1, 1, 0, bias=False), get_norm(bn_norm, oup), nn.ReLU6(inplace=True) ) class InvertedResidual(nn.Module): def __init__(self, inp, oup, bn_norm, stride, expand_ratio): super(InvertedResidual, self).__init__() assert stride in [1, 2] hidden_dim = round(inp * expand_ratio) self.identity = stride == 1 and inp == oup if expand_ratio == 1: self.conv = nn.Sequential( # dw nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), get_norm(bn_norm, hidden_dim), nn.ReLU6(inplace=True), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), get_norm(bn_norm, oup), ) else: self.conv = nn.Sequential( # pw nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), get_norm(bn_norm, hidden_dim), nn.ReLU6(inplace=True), # dw nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), get_norm(bn_norm, hidden_dim), nn.ReLU6(inplace=True), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ) def forward(self, x): if self.identity: return x + self.conv(x) else: return self.conv(x) class MobileNetV2(nn.Module): def __init__(self, bn_norm, width_mult=1.): super(MobileNetV2, self).__init__() # setting of inverted residual blocks self.cfgs = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] # building first layer input_channel = _make_divisible(32 * width_mult, 4 if width_mult == 0.1 else 8) layers = [conv_3x3_bn(3, input_channel, 2, bn_norm)] # building inverted residual blocks block = InvertedResidual for t, c, n, s in self.cfgs: output_channel = _make_divisible(c * width_mult, 4 if width_mult == 0.1 else 8) for i in range(n): layers.append(block(input_channel, output_channel, bn_norm, s if i == 0 else 1, t)) input_channel = output_channel self.features = nn.Sequential(*layers) # building last several layers output_channel = _make_divisible(1280 * width_mult, 4 if width_mult == 0.1 else 8) if width_mult > 1.0 else 1280 self.conv = conv_1x1_bn(input_channel, output_channel, bn_norm) self._initialize_weights() def forward(self, x): x = self.features(x) x = self.conv(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.weight.data.normal_(0, 0.01) m.bias.data.zero_() @BACKBONE_REGISTRY.register() def build_mobilenetv2_backbone(cfg): """ Create a MobileNetV2 instance from config. Returns: MobileNetV2: a :class: `MobileNetV2` instance. """ # fmt: off pretrain = cfg.MODEL.BACKBONE.PRETRAIN pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH bn_norm = cfg.MODEL.BACKBONE.NORM depth = cfg.MODEL.BACKBONE.DEPTH # fmt: on width_mult = { "1.0x": 1.0, "0.75x": 0.75, "0.5x": 0.5, "0.35x": 0.35, '0.25x': 0.25, '0.1x': 0.1, }[depth] model = MobileNetV2(bn_norm, width_mult) if pretrain: try: state_dict = torch.load(pretrain_path, map_location=torch.device('cpu')) logger.info(f"Loading pretrained model from {pretrain_path}") except FileNotFoundError as e: logger.info(f'{pretrain_path} is not found! Please check this path.') raise e except KeyError as e: logger.info("State dict keys error! Please check the state dict.") raise e incompatible = model.load_state_dict(state_dict, strict=False) if incompatible.missing_keys: logger.info( get_missing_parameters_message(incompatible.missing_keys) ) if incompatible.unexpected_keys: logger.info( get_unexpected_parameters_message(incompatible.unexpected_keys) ) return model