# encoding: utf-8 """ @author: xingyu liao @contact: sherlockliao01@gmail.com """ import json import logging import os from fastreid.data.build import _root from fastreid.data.build import build_reid_train_loader, build_reid_test_loader from fastreid.data.datasets import DATASET_REGISTRY from fastreid.data.transforms import build_transforms from fastreid.engine import DefaultTrainer from fastreid.evaluation.clas_evaluator import ClasEvaluator from fastreid.utils import comm from fastreid.utils.checkpoint import PathManager from .dataset import ClasDataset class ClasTrainer(DefaultTrainer): idx2class = None @classmethod def build_train_loader(cls, cfg): """ Returns: iterable It now calls :func:`fastreid.data.build_reid_train_loader`. Overwrite it if you'd like a different data loader. """ logger = logging.getLogger("fastreid.clas_dataset") logger.info("Prepare training set") train_items = list() for d in cfg.DATASETS.NAMES: data = DATASET_REGISTRY.get(d)(root=_root) if comm.is_main_process(): data.show_train() train_items.extend(data.train) transforms = build_transforms(cfg, is_train=True) train_set = ClasDataset(train_items, transforms) cls.idx2class = train_set.idx_to_class data_loader = build_reid_train_loader(cfg, train_set=train_set) return data_loader @classmethod def build_test_loader(cls, cfg, dataset_name): """ Returns: iterable It now calls :func:`fastreid.data.build_reid_test_loader`. Overwrite it if you'd like a different data loader. """ data = DATASET_REGISTRY.get(dataset_name)(root=_root) if comm.is_main_process(): data.show_test() transforms = build_transforms(cfg, is_train=False) test_set = ClasDataset(data.query, transforms, cls.idx2class) data_loader, _ = build_reid_test_loader(cfg, test_set=test_set) return data_loader @classmethod def build_evaluator(cls, cfg, dataset_name, output_dir=None): data_loader = cls.build_test_loader(cfg, dataset_name) return data_loader, ClasEvaluator(cfg, output_dir) @staticmethod def auto_scale_hyperparams(cfg, num_classes): cfg = DefaultTrainer.auto_scale_hyperparams(cfg, num_classes) # Save index to class dictionary output_dir = cfg.OUTPUT_DIR if comm.is_main_process() and output_dir: path = os.path.join(output_dir, "idx2class.json") with PathManager.open(path, "w") as f: json.dump(ClasTrainer.idx2class, f) return cfg