# -*- coding: utf-8 -*- # @Time : 2021/10/11 9:47:53 # @Author : zuchen.wang@vipshop.com # @File : trainer.py import logging import os import torch from fastreid.data.build import _root from fastreid.engine import DefaultTrainer from fastreid.data.datasets import DATASET_REGISTRY from fastreid.utils import comm from fastreid.data.transforms import build_transforms from fastreid.data.build import build_reid_train_loader, build_reid_test_loader from fastreid.evaluation.pair_score_evaluator import PairScoreEvaluator from projects.FastShoe.fastshoe.data import PairDataset class PairTrainer(DefaultTrainer): @classmethod def build_train_loader(cls, cfg): logger = logging.getLogger(__name__) logger.info("Prepare training set") pos_folder_list, neg_folder_list = list(), list() for d in cfg.DATASETS.NAMES: data = DATASET_REGISTRY.get(d)(img_dir=os.path.join(_root, 'shoe_crop_all_images'), anno_path=os.path.join(_root, 'labels/1019/1019_clean_train.json')) if comm.is_main_process(): data.show_train() pos_folder_list.extend(data.train) neg_folder_list.extend(data.query) transforms = build_transforms(cfg, is_train=True) train_set = PairDataset(img_root=os.path.join(_root, 'shoe_crop_all_images'), pos_folders=pos_folder_list, neg_folders=neg_folder_list, transform=transforms, mode='train') data_loader = build_reid_train_loader(cfg, train_set=train_set) return data_loader @classmethod def build_test_loader(cls, cfg, dataset_name): transforms = build_transforms(cfg, is_train=False) if dataset_name == 'ShoeDataset': shoe_img_dir = os.path.join(_root, 'shoe_crop_all_images') if cfg.eval_only: # for testing mode = 'test' anno_path = os.path.join(_root, 'labels/1019/1019_clean_test.json') else: # for validation in train phase mode = 'val' anno_path = os.path.join(_root, 'labels/1019/1019_clean_val.json') data = DATASET_REGISTRY.get(dataset_name)(img_dir=shoe_img_dir, anno_path=anno_path) test_set = PairDataset(img_root=shoe_img_dir, pos_folders=data.train, neg_folders=data.query, transform=transforms, mode=mode) elif dataset_name == 'OnlineDataset': if cfg.eval_only: # for testing test_set_0830 = DATASET_REGISTRY.get(dataset_name)(img_dir=os.path.join(_root, 'excel/0830/shoe_crop_images'), anno_path=os.path.join(_root, 'excel/0830/excel_pair_crop.csv'), transform=transforms) # for validation in train phase test_set_0908 = DATASET_REGISTRY.get(dataset_name)(img_dir=os.path.join(_root, 'excel/0908/shoe_crop_images'), anno_path=os.path.join(_root, 'excel/0908/excel_pair_crop_val.csv'), transform=transforms) test_set = torch.utils.data.ConcatDataset((test_set_0830, test_set_0908)) else: test_set = DATASET_REGISTRY.get(dataset_name)(img_dir=os.path.join(_root, 'excel/0908/shoe_crop_images'), anno_path=os.path.join(_root, 'excel/0908/excel_pair_crop_val.csv'), transform=transforms) if comm.is_main_process(): if dataset_name == 'ShoeDataset': data.show_test() # else: # test_set.show_test() data_loader, _ = build_reid_test_loader(cfg, test_set=test_set) return data_loader @classmethod def build_evaluator(cls, cfg, dataset_name, output_dir=None): data_loader = cls.build_test_loader(cfg, dataset_name) return data_loader, PairScoreEvaluator(cfg, output_dir)