from __future__ import absolute_import from . import caffe_pb2 as pb def pair_process(item, strict_one=True): if hasattr(item, '__iter__'): for i in item: if i != item[0]: if strict_one: raise ValueError("number in item {} must be the same".format(item)) else: print("IMPORTANT WARNING: number in item {} must be the same".format(item)) return item[0] return item def pair_reduce(item): if hasattr(item, '__iter__'): for i in item: if i != item[0]: return item return [item[0]] return [item] class Layer_param(): def __init__(self, name='', type='', top=(), bottom=()): self.param = pb.LayerParameter() self.name = self.param.name = name self.type = self.param.type = type self.top = self.param.top self.top.extend(top) self.bottom = self.param.bottom self.bottom.extend(bottom) def fc_param(self, num_output, weight_filler='xavier', bias_filler='constant', has_bias=True): if self.type != 'InnerProduct': raise TypeError('the layer type must be InnerProduct if you want set fc param') fc_param = pb.InnerProductParameter() fc_param.num_output = num_output fc_param.weight_filler.type = weight_filler fc_param.bias_term = has_bias if has_bias: fc_param.bias_filler.type = bias_filler self.param.inner_product_param.CopyFrom(fc_param) def conv_param(self, num_output, kernel_size, stride=(1), pad=(0,), weight_filler_type='xavier', bias_filler_type='constant', bias_term=True, dilation=None, groups=None): """ add a conv_param layer if you spec the layer type "Convolution" Args: num_output: a int kernel_size: int list stride: a int list weight_filler_type: the weight filer type bias_filler_type: the bias filler type Returns: """ if self.type not in ['Convolution', 'Deconvolution']: raise TypeError('the layer type must be Convolution or Deconvolution if you want set conv param') conv_param = pb.ConvolutionParameter() conv_param.num_output = num_output conv_param.kernel_size.extend(pair_reduce(kernel_size)) conv_param.stride.extend(pair_reduce(stride)) conv_param.pad.extend(pair_reduce(pad)) conv_param.bias_term = bias_term conv_param.weight_filler.type = weight_filler_type if bias_term: conv_param.bias_filler.type = bias_filler_type if dilation: conv_param.dilation.extend(pair_reduce(dilation)) if groups: conv_param.group = groups self.param.convolution_param.CopyFrom(conv_param) def pool_param(self, type='MAX', kernel_size=2, stride=2, pad=None, ceil_mode=False): pool_param = pb.PoolingParameter() pool_param.pool = pool_param.PoolMethod.Value(type) pool_param.kernel_size = pair_process(kernel_size) pool_param.stride = pair_process(stride) pool_param.ceil_mode = ceil_mode if pad: if isinstance(pad, tuple): pool_param.pad_h = pad[0] pool_param.pad_w = pad[1] else: pool_param.pad = pad self.param.pooling_param.CopyFrom(pool_param) def batch_norm_param(self, use_global_stats=0, moving_average_fraction=None, eps=None): bn_param = pb.BatchNormParameter() bn_param.use_global_stats = use_global_stats if moving_average_fraction: bn_param.moving_average_fraction = moving_average_fraction if eps: bn_param.eps = eps self.param.batch_norm_param.CopyFrom(bn_param) def upsample_param(self, size=None, scale_factor=None): upsample_param = pb.UpsampleParameter() if scale_factor: if isinstance(scale_factor, int): upsample_param.scale = scale_factor else: upsample_param.scale_h = scale_factor[0] upsample_param.scale_w = scale_factor[1] if size: if isinstance(size, int): upsample_param.upsample_h = size else: upsample_param.upsample_h = size[0] upsample_param.upsample_w = size[1] # upsample_param.upsample_h = size[0] * scale_factor # upsample_param.upsample_w = size[1] * scale_factor self.param.upsample_param.CopyFrom(upsample_param) def interp_param(self, size=None, scale_factor=None): interp_param = pb.InterpParameter() if scale_factor: if isinstance(scale_factor, int): interp_param.zoom_factor = scale_factor if size: print('size:', size) interp_param.height = size[0] interp_param.width = size[1] self.param.interp_param.CopyFrom(interp_param) def add_data(self, *args): """Args are data numpy array """ del self.param.blobs[:] for data in args: new_blob = self.param.blobs.add() for dim in data.shape: new_blob.shape.dim.append(dim) new_blob.data.extend(data.flatten().astype(float)) def set_params_by_dict(self, dic): pass def copy_from(self, layer_param): pass def set_enum(param, key, value): setattr(param, key, param.Value(value))