# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import pprint import sys from collections import Mapping, OrderedDict import numpy as np from tabulate import tabulate from termcolor import colored def print_csv_format(results): """ Print main metrics in a format similar to Detectron2, so that they are easy to copypaste into a spreadsheet. Args: results (OrderedDict): {metric -> score} """ # unordered results cannot be properly printed assert isinstance(results, OrderedDict) or not len(results), results logger = logging.getLogger(__name__) dataset_name = results.pop('dataset') metrics = ["Dataset"] + [k for k, v in results.items() if not isinstance(v, (list, np.ndarray))] csv_results = [[dataset_name] + [v for v in results.values() if not isinstance(v, (list, np.ndarray))]] # tabulate it table = tabulate( csv_results, tablefmt="pipe", floatfmt=".4f", headers=metrics, numalign="left", ) logger.info("Evaluation results in csv format: \n" + colored(table, "cyan")) # show acc precision, recall and f1 under given threshold metrics = [k for k, v in results.items() if isinstance(v, (list, np.ndarray))] csv_results = [v for v in results.values() if isinstance(v, (list, np.ndarray))] csv_results = [v.tolist() if isinstance(v, np.ndarray) else v for v in csv_results] csv_results = np.array(csv_results).T.tolist() table = tabulate( csv_results, tablefmt="pipe", floatfmt=".4f", headers=metrics, numalign="left", ) logger.info("Evaluation results in csv format: \n" + colored(table, "cyan")) def verify_results(cfg, results): """ Args: results (OrderedDict[dict]): task_name -> {metric -> score} Returns: bool: whether the verification succeeds or not """ expected_results = cfg.TEST.EXPECTED_RESULTS if not len(expected_results): return True ok = True for task, metric, expected, tolerance in expected_results: actual = results[task][metric] if not np.isfinite(actual): ok = False diff = abs(actual - expected) if diff > tolerance: ok = False logger = logging.getLogger(__name__) if not ok: logger.error("Result verification failed!") logger.error("Expected Results: " + str(expected_results)) logger.error("Actual Results: " + pprint.pformat(results)) sys.exit(1) else: logger.info("Results verification passed.") return ok def flatten_results_dict(results): """ Expand a hierarchical dict of scalars into a flat dict of scalars. If results[k1][k2][k3] = v, the returned dict will have the entry {"k1/k2/k3": v}. Args: results (dict): """ r = {} for k, v in results.items(): if isinstance(v, Mapping): v = flatten_results_dict(v) for kk, vv in v.items(): r[k + "/" + kk] = vv else: r[k] = v return r